Количественная форма C-свойства Лузина

Доведено наступне твердження, яке є кількісною формою теореми Лузіна про C-властивість. Нехай (X,d,μ)—обмежений метричний простір із метрикою d і регулярною борелевого мірою μ, що пов'язані умовою подвоєння. Тоді для будь-якої вимірної на X функції f існують додатна зростаюча функція η∈Ω(η(+0)=...

Full description

Saved in:
Bibliographic Details
Published in:Український математичний журнал
Date:2010
Main Author: Кротов, В.Г.
Format: Article
Language:Russian
Published: Інститут математики НАН України 2010
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/165102
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Количественная форма C-свойства Лузина / В.Г. Кротов // Український математичний журнал. — 2010. — Т. 62, № 3. — С. 387–395. — Бібліогр.: 15 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-165102
record_format dspace
spelling Кротов, В.Г.
2020-02-11T18:00:26Z
2020-02-11T18:00:26Z
2010
Количественная форма C-свойства Лузина / В.Г. Кротов // Український математичний журнал. — 2010. — Т. 62, № 3. — С. 387–395. — Бібліогр.: 15 назв. — рос.
1027-3190
https://nasplib.isofts.kiev.ua/handle/123456789/165102
517.5
Доведено наступне твердження, яке є кількісною формою теореми Лузіна про C-властивість. Нехай (X,d,μ)—обмежений метричний простір із метрикою d і регулярною борелевого мірою μ, що пов'язані умовою подвоєння. Тоді для будь-якої вимірної на X функції f існують додатна зростаюча функція η∈Ω(η(+0)=0 і η(t)t−a спадає при деякому a>0), вимірна на X невід'ємна функція g та множина E⊂X,μE=0, для яких |f(x)−f(y)|⩽[g(x)+g(y)]η(d(x,y)),x,y∈X∖E. Якщо f∈Lp(X),p>0, то можна вибрати g∈Lp(X).
We prove the following statement, which is a quantitative form of the Luzin theorem on C-property: Let (X, d, μ) be a bounded metric space with metric d and regular Borel measure μ that are related to one another by the doubling condition. Then, for any function f measurable on X, there exist a positive increasing function η ∈ Ω (η(+0) = 0 and η(t)t −a decreases for a certain a > 0), a nonnegative function g measurable on X, and a set E ⊂ X, μE = 0 , for which |f(x)−f(y)|⩽[g(x)+g(y)]η(d(x,y)),x,y∈X/E If f ∈ L p (X), p >0, then it is possible to choose g belonging to L p (X).
ru
Інститут математики НАН України
Український математичний журнал
Статті
Количественная форма C-свойства Лузина
Quantitative form of the Luzin C-property
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Количественная форма C-свойства Лузина
spellingShingle Количественная форма C-свойства Лузина
Кротов, В.Г.
Статті
title_short Количественная форма C-свойства Лузина
title_full Количественная форма C-свойства Лузина
title_fullStr Количественная форма C-свойства Лузина
title_full_unstemmed Количественная форма C-свойства Лузина
title_sort количественная форма c-свойства лузина
author Кротов, В.Г.
author_facet Кротов, В.Г.
topic Статті
topic_facet Статті
publishDate 2010
language Russian
container_title Український математичний журнал
publisher Інститут математики НАН України
format Article
title_alt Quantitative form of the Luzin C-property
description Доведено наступне твердження, яке є кількісною формою теореми Лузіна про C-властивість. Нехай (X,d,μ)—обмежений метричний простір із метрикою d і регулярною борелевого мірою μ, що пов'язані умовою подвоєння. Тоді для будь-якої вимірної на X функції f існують додатна зростаюча функція η∈Ω(η(+0)=0 і η(t)t−a спадає при деякому a>0), вимірна на X невід'ємна функція g та множина E⊂X,μE=0, для яких |f(x)−f(y)|⩽[g(x)+g(y)]η(d(x,y)),x,y∈X∖E. Якщо f∈Lp(X),p>0, то можна вибрати g∈Lp(X). We prove the following statement, which is a quantitative form of the Luzin theorem on C-property: Let (X, d, μ) be a bounded metric space with metric d and regular Borel measure μ that are related to one another by the doubling condition. Then, for any function f measurable on X, there exist a positive increasing function η ∈ Ω (η(+0) = 0 and η(t)t −a decreases for a certain a > 0), a nonnegative function g measurable on X, and a set E ⊂ X, μE = 0 , for which |f(x)−f(y)|⩽[g(x)+g(y)]η(d(x,y)),x,y∈X/E If f ∈ L p (X), p >0, then it is possible to choose g belonging to L p (X).
issn 1027-3190
url https://nasplib.isofts.kiev.ua/handle/123456789/165102
fulltext 0099 0100 0101 0102 0103 0104 0105 0106 0107
citation_txt Количественная форма C-свойства Лузина / В.Г. Кротов // Український математичний журнал. — 2010. — Т. 62, № 3. — С. 387–395. — Бібліогр.: 15 назв. — рос.
work_keys_str_mv AT krotovvg količestvennaâformacsvoistvaluzina
AT krotovvg quantitativeformoftheluzincproperty
first_indexed 2025-11-25T23:55:32Z
last_indexed 2025-11-25T23:55:32Z
_version_ 1850590243859726336