Частичная асимптотическая устойчивость абстрактных дифференциальных уравнений
Розглядається задача про часткову асимптотичну стійкість по відношенню до неперервного функціонала для класу абстрактних динамічних процесів із багатозначними розв'язками на метричному просторі. Вказаний клас процесів містить скінченно- та нескінченновимірні динамічні системи, диференціальні вк...
Gespeichert in:
| Datum: | 2006 |
|---|---|
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | Russian |
| Veröffentlicht: |
Інститут математики НАН України
2006
|
| Schriftenreihe: | Український математичний журнал |
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/165107 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Частичная асимптотическая устойчивость абстрактных дифференциальных уравнений / А.Л. Зуев // Український математичний журнал. — 2006. — Т. 58, № 5. — С. 629–637. — Бібліогр.: 15 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | Розглядається задача про часткову асимптотичну стійкість по відношенню до неперервного функціонала для класу абстрактних динамічних процесів із багатозначними розв'язками на метричному просторі. Вказаний клас процесів містить скінченно- та нескінченновимірні динамічні системи, диференціальні включення, рівняння із загаюванням. Доведено узагальнення теореми Барбашина-Красовського та принципу інваріантності Лаcалля в умовах існування неперервного функціонала Ляпунова. У випадку існування диференційовного функціонала Ляпунова отримано достатні умови часткової стійкості неперервних напівгруп у банаховому просторі. |
|---|