Continuity of certain pseudodifferential operators in spaces of generalized smoothness

We investigate the continuity of a pseudodifferential operator in some spaces of generalized smoothness. Some properties of spaces of generalized smoothness and generalized Lipschitz spaces are established. Досліджено неперервність псевдодиференціального оператора у деяких просторах узагальненої гла...

Full description

Saved in:
Bibliographic Details
Published in:Український математичний журнал
Date:2006
Main Author: Knopova, V.P.
Format: Article
Language:English
Published: Інститут математики НАН України 2006
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/165120
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Continuity of certain pseudodifferential operators in spaces of generalized smoothness / V.P. Knopova // Український математичний журнал. — 2006. — Т. 58, № 5. — С. 638–652. — Бібліогр.: 14 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-165120
record_format dspace
spelling Knopova, V.P.
2020-02-11T20:51:34Z
2020-02-11T20:51:34Z
2006
Continuity of certain pseudodifferential operators in spaces of generalized smoothness / V.P. Knopova // Український математичний журнал. — 2006. — Т. 58, № 5. — С. 638–652. — Бібліогр.: 14 назв. — англ.
1027-3190
https://nasplib.isofts.kiev.ua/handle/123456789/165120
519.21
We investigate the continuity of a pseudodifferential operator in some spaces of generalized smoothness. Some properties of spaces of generalized smoothness and generalized Lipschitz spaces are established.
Досліджено неперервність псевдодиференціального оператора у деяких просторах узагальненої гладкості. Доведено деякі властивості просторів узагальненої гладкості та узагальнених просторів Ліпшиця.
en
Інститут математики НАН України
Український математичний журнал
Статті
Continuity of certain pseudodifferential operators in spaces of generalized smoothness
Неперервність деяких псевдодиференціальних операторів у просторах узагальненої гладкості
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Continuity of certain pseudodifferential operators in spaces of generalized smoothness
spellingShingle Continuity of certain pseudodifferential operators in spaces of generalized smoothness
Knopova, V.P.
Статті
title_short Continuity of certain pseudodifferential operators in spaces of generalized smoothness
title_full Continuity of certain pseudodifferential operators in spaces of generalized smoothness
title_fullStr Continuity of certain pseudodifferential operators in spaces of generalized smoothness
title_full_unstemmed Continuity of certain pseudodifferential operators in spaces of generalized smoothness
title_sort continuity of certain pseudodifferential operators in spaces of generalized smoothness
author Knopova, V.P.
author_facet Knopova, V.P.
topic Статті
topic_facet Статті
publishDate 2006
language English
container_title Український математичний журнал
publisher Інститут математики НАН України
format Article
title_alt Неперервність деяких псевдодиференціальних операторів у просторах узагальненої гладкості
description We investigate the continuity of a pseudodifferential operator in some spaces of generalized smoothness. Some properties of spaces of generalized smoothness and generalized Lipschitz spaces are established. Досліджено неперервність псевдодиференціального оператора у деяких просторах узагальненої гладкості. Доведено деякі властивості просторів узагальненої гладкості та узагальнених просторів Ліпшиця.
issn 1027-3190
url https://nasplib.isofts.kiev.ua/handle/123456789/165120
citation_txt Continuity of certain pseudodifferential operators in spaces of generalized smoothness / V.P. Knopova // Український математичний журнал. — 2006. — Т. 58, № 5. — С. 638–652. — Бібліогр.: 14 назв. — англ.
work_keys_str_mv AT knopovavp continuityofcertainpseudodifferentialoperatorsinspacesofgeneralizedsmoothness
AT knopovavp neperervnístʹdeâkihpsevdodiferencíalʹnihoperatorívuprostorahuzagalʹnenoígladkostí
first_indexed 2025-11-27T01:42:50Z
last_indexed 2025-11-27T01:42:50Z
_version_ 1850791620187783168
fulltext UDC 519.21 V. P. Knopova (V. M. Glushkov Inst. Cybern. Nat. Acad. Sci. Ukraine, Kyiv) CONTINUITY OF CERTAIN PSEUDODIFFERENTIAL OPERATORS IN SPACES OF GENERALIZED SMOOTHNESS NEPERERVNIST| DEQKYX PSEVDODYFERENCIAL|NYX OPERATORIV U PROSTORAX UZAHAL|NENO} HLADKOSTI We investigate the continuity of a pseudodifferential operator in some spaces of generalized smoothness. Some properties of the spaces of generalized smoothness and the generalized Lipschitz spaces are proved. DoslidΩeno neperervnist\ psevdodyferencial\noho operatora u deqkyx prostorax uzahal\neno] hladkosti. Dovedeno deqki vlastyvosti prostoriv uzahal\neno] hladkosti ta uzahal\nenyx prostoriv Lipßycq. 1. Introduction. In this paper we investigate the continuity of a pseudodifferential operator p ( x, D ), the symbol p ( x, ξ ) of which for fixed x is a continuous negative definite function, in the spaces of generalized smoothness. Such a continuity result enables us to add p ( x, D ) as a perturbation to certain generator of an Lp-sub- Markovian semigroup, and still obtain the generator of an Lp-sub-Markovian semigroup. For the survey on pseudodifferential operators with continuous negative definite symbol we refer to [1, 2], and the literature given therein, in particular, we mention [3, 4], where the symbolic calculus in L 2 for such operators was developed. In [5]1 the symbolic calculus for pseudodifferential operators in Lp was developed, and it was proved that under certain conditions on the symbol p ( x, ξ ) of a pseudodifferential operator p ( x, D ), this operator is continuous between some (related) ψ-Bessel potential spaces. Such conditions are similar to those in L 2-case, but much stronger, since to guarantee the continuity of p ( x, D ) between subspaces of L p ( R n ) the Lizorkin’s Fourier multiplier theorem is applied. Our approach is a bit different. We will pose the conditions on the Lévy measure of p ( x, ξ ), and prove that under such conditions p ( x, D ) is continuous between related generalized Lipschitz spaces. Assuming also that p ( x, D ) is continuous between certain ψ-Bessel potential spaces, we obtain our main result by interpolation arguments. Thus, our conditions on the symbol are different from those given in [5]. In the second section we give the necessary definitions concerning the spaces of generalized smoothness. The third section contains some technical statements on such spaces as well as some properties of the generalized Lipschitz spaces. In the fourth section under some conditions on the Lévy measure of continuous negative define symbol p ( x, ξ ) we prove the continuity of p ( x, D ) in generalized Lipschitz spaces. In the last section we prove that p ( x, D ) is continuous in the related spaces of generalized smoothness. This result allows us to use p ( x, D ) as the perturbation of a generator of an Lp-sub-Markovian semigroup. If it is not specially indicated, all the function spaces, considered in the paper, are over R n. 2. Preliminaries. We start with some preliminary definitions and results. Definition 1. A. A sequence ( )γ j j∈N0 of positive numbers is called strongly increasing if there is a positive constant d and a natural number κ such that equations 1 This manuscript can also be found on the web-page of the author, http:// www.math.etzh.ch//farkas/. © V. P. KNOPOVA, 2006 638 ISSN 1027-3190. Ukr. mat. Ωurn., 2006, t. 58, # 5 CONTINUITY OF CERTAIN PSEUDODIFFERENTIAL OPERATORS IN THE SPACES … 639 d γj ≤ γk for all j, k, 0 ≤ j ≤ k, and 2 γj ≤ γk for all j, k, with j + κ ≤ k are satisfied. B. A sequence ( )γ j j∈N0 of positive numbers is of bounded growth if there exists a positive constant d and a number J ∈ N0 , such that γj + 1 ≤ d γj for any j ≥ J. C. A sequence ( )σ j j∈N0 is called admissible if d0 σj ≤ σj + 1 ≤ d1 σj for all j ∈ N holds for some positive d0 and d1 . For a fixed strongly increasing sequence N = ( )Nj j∈N0 and fixed J ∈ N define the covering Ω j N J, = ξ ξ κ∈ ≤{ }+R n j JN: if j = 0, 1, … , J κ, and Ω j N J, = ξ ξκ κ∈ ≤ ≤{ }− +R n j J j JN N: if j = J κ, J κ + 1, … for some κ. Definition 2. Let Φ N, J be a collection of functions ϕ j N J j ,( ) ∈N0 such that B1 ) ϕ j N J, ∈ C n 0 ∞( )R and ϕ ξj N J, ( ) ≥ 0 if ξ ∈ R n for J ∈ N0 ; B2 ) sup ,pϕ j N J ⊂ Ω j N J, ; B3 ) for any γ ∈ N0 n there exists a constant cγ > 0 such that for any J ∈ N0 D j N Jγ ϕ ξ, ( ) ≤ | ξ | γ for any γ ∈ R n ; B4 ) there exists a constant cϕ > 0 such that 0 < j j N J = ∞ ∑ 0 ϕ ξ, ( ) = cϕ < ∞ for any ξ ∈ R n. We will give a general definition of the spaces of generalized smoothness, Fpq Nσ, and Bpq Nσ, , which are the generalizations of Triebel – Lizorkin and Besov spaces respectively (see [6]). Definition 3. Let ( )Nj j∈N0 be a strongly increasing sequence of bounded growth, and let ( )σ j∈N0 be an admissible sequence. i) Let 0 < p, q ≤ ∞. The Besov space of generalized smoothness is Bpq Nσ, = f S f D fB j j N J j l Lpq N q p ∈ ′ = ( ) < ∞      ∈ : ( ), , ( ) σ σ ϕ N0 . ii) The 0 < p < ∞, 0 < q ≤ ∞. The Triebel – Lizorkin space of generalized smoothness is Fpq Nσ, = f S f D fF j j N J j L lpq N p q ∈ ′ = ( ) < ∞      ∈ : ( ), , ( ) σ σ ϕ N0 . ISSN 1027-3190. Ukr. mat. Ωurn., 2006, t. 58, # 5 640 V. P. KNOPOVA Remark 1. For 0 < p , q < ∞ the spaces Bpq Nσ, and Fpq Nσ, can be defined without the restriction that ( )Nj j∈N0 is of bounded growth. Such spaces are the generalizations (due to the standardization theorem) of those introduced by Kaljabin [7, 8]; they are equivalent to the spaces given in [7, 8] if σ is strongly increasing and of bounded growth (see [6] for details). Denote by σ s the sequence ( )σ j s j∈N0 = ( )2 0 sj j∈N . Remark 2. For Nj = 2 j and σ = σ s the spaces Fpq Nsσ , and Bpq Nsσ , coincide with Fpq s and Bpq s respectively (see [6]). We are interested in the situation when the strongly increasing sequence N is associated with a function which satisfies some additional conditions. For the following definition we refer to [6] (see also [5]). Definition 4. Let A be the class of all nonnegative functions a : R n → R of class C ∞ with the following properties: A) lim ( ) ξ ξ →∞ a = ∞; B) a ( ξ ) is almost increasing in | ξ |, i.e., there exist constants δ0 ≥ 1 and R > > 0 such that a ( ξ ) ≤ δ0 a ( η ) if R ≤ | ξ | ≤ η; C) there exists m > 0 such that a ( ξ ) | ξ | – m is almost decreasing in | ξ |, i.e., there exists a constant δm , 0 < δm ≤ 1, and R > 0 such that a ( ξ ) | ξ | – m ≥ δm a ( η ) | η | – m if R ≤ | ξ | ≤ η; D) for every multiindex α = ( α1 , … , αn ), α i ∈ N ∪ { 0 } , i = 1, … , n, there exists some cα > 0 such that | D α a ( ξ ) | ≤ cα a ( ξ ) 1 2+( )− ξ α , if | ξ | ≥ R. The functions from A are called admissible functions. It was proved that for an admissible symbol a ( ξ ) the sequence N a = Nj a r j ,( ) ∈N0 , where Nj a r, = sup ξ ξ: ( )a rj≤{ }2 , j ∈ N0 , (1) is strongly increasing, see Lemma 3.1.16 from [6]. Note that the definition of the strongly increasing sequence by (1) does not require the radial symmetry of the symbol. Recall the definition of the ψ-Bessel potential space of order s: Hp s nψ, ( )R = u F Fus Lp : ( ) ( )− +( )( ) < ∞      /1 21 ψ ξ ξ , where ψ is a continuous negative definite function, Fu is the Fourier transform of function u, and s > 0 (see [9] for details). For the admissible continuous negative functions a ( ξ ) Fp Ns , , 2 σ = Hp a s, , s > 0 (see [6]). For the following definition we refer to [2, p. 293, 294], or [10] (§ 1.9.1). ISSN 1027-3190. Ukr. mat. Ωurn., 2006, t. 58, #5 CONTINUITY OF CERTAIN PSEUDODIFFERENTIAL OPERATORS IN THE SPACES … 641 Let G = { z ∈ C; 0 < Re z < 1 }. For two complex Banach spaces X X0 0 , ⋅( ) and X X1 1 , ⋅( ) both embedded into some Hausdorff space χ, set X : = X0 + X1 , equipped with the norm || ⋅ || X : = max ,⋅ ⋅( )X X0 1 which is equivalent to the norm ⋅ X0 + + ⋅ X1 , and which turns X into a Banach space. Denote by W ( G, X ) the space of all continuous functions ω : G → X with the following properties: 1) ω G is analytic and sup ( ) z G Xz ∈ ω < ∞; 2) ω ( i y ) ∈ X0 and ω ( 1 + i y ) ∈ X1 , for y ∈ R with continuous maps y � � ω ( i y ) and y � ω ( 1 + i y ); 3) ω W G X( , ) : = max sup ( ) , sup ( )ω ωi y i yX X0 1 1 +( ) < ∞. By the maximum principle W G X W G X( , ), ( , )⋅( ) is the Banach space. We call { X0 , X 1 } an interpolation couple, and for any interpolation couple define its complex interpolation space [ X0 , X1 ] θ : = { u ∈ X; there exists ω ∈ W ( G, X ) such that ω ( θ ) = u}. On [ X0 , X1 ] θ we introduce the norm u X X0 1,[ ]θ : = inf , ( , ) ( )( , )ω ω ω θW G X W G X u∈ =( )and . (2) With this norm the space X X X X0 1 0 1 , , ,[ ] ⋅( )[ ]θ θ is a Banach space. 3. Some properties of the spaces of generalized smoothness and generalized Lipschitz spaces. In this section we give some auxiliary technical results, which will be necessary to prove our main results in Section 5. Lemma 1. Let 0 < p0 , q0 , p1 , q1 ≤ ∞, and 0 < θ < 1. Then for 1 p = 1 − θ p + + θ p1 , 1 q = 1 0 − θ q + θ q1 and s = ( 1 – θ ) s0 + θ s1 we have B Bp q N p q Ns s 0 0 0 1 1 1 σ σ θ , ,,    = Bpq Nsσ , . Proof. Let ϕ j N J j ,{ } ≥0 ∈ Φ N, J, and S f = f j N J j* ,ϕ{ } ≥0 . From the definition of Bpq Nsσ , we have f ∈ Bpq Nsσ , ⇔ S f ∈ l Lq s p( ), where lq s = ( ) : ( )a a lj j s j j q≥ ≥ ∈{ }0 02 . Therefore, by the definition of W ( G, X ) and (2) we see that for 0 < θ < 1 B Bp q N p q Ns s 0 0 0 1 1 1 σ σ θ , ,,    = f B Bp q N p q Ns s ∈ +   0 0 0 0 0 1 σ σ, , : ∃ ω ∈ W G B Bp q N p q Ns s , , , 0 0 0 1 1 1 σ σ+    , such that ω ( θ ) = f } = = { S f ∈ l Lq s p0 0 0 ( ) + l Lq s p1 1 1( ) : ∃ ω ∈ W G l L l Lq p q s p s , 0 0 0 1 1 1 σ ( ) + ( )    ISSN 1027-3190. Ukr. mat. Ωurn., 2006, t. 58, # 5 642 V. P. KNOPOVA such that g ( θ ) = S f } = = S f S f l L l Lq s p q s p: ,∈ ( ) ( )[ ]{ }0 0 0 1 1 1 θ = S f S f l Lq s p: ( )∈{ } = Bpq Nsσ , . The lemma is proved. Remark 3. Similarly, for 0 < p0 , q0 , p1 , q1 < ∞ and 0 < θ < 1, 1 p = 1 − θ p + + θ p1 , 1 q = 1 0 − θ q + θ q1 , s = ( 1 – θ ) s0 + θ s1 , we can prove that F Fp q N p q Ns s 0 0 1 1 0 1σ σ θ , ,,[ ] = Fpq Nsσ , . The embedding properties of the spaces Fpq Nsσ , and Bpq Nsσ , are similar to those of Fpq s and Bpq s , since the construction of the spaces of generalized smoothness is different to those of Fpq s and Bpq s only in the choice of the decomposition of unity and the sequence σ s. We will give a chain of embeddings, which will be useful for us when we prove the mapping properties of certain pseudodifferential operators. Lemma 2. Let N = Nj a j ,2 0 ( ) ∈N , 0 < q ≤ p < ∞, and 0 < ε < s < ∞. Then the following embedding take place: Fp Ns , , 2 σ ⊂ Fp q Ns , ,σ ⊂ Bp p Ns , ,σ ⊂ Fp q Ns , ,σ ε− . Proof. Two left-hand embeddings follow from l q ⊂ l p for q ≤ p and the observation that Fp p Ns , ,σ = Bp p Ns , ,σ , 2 ≤ p < ∞. Indeed, for f ∈ Fp q Ns , ,σ f Bp p s N , ,σ ≤ c f Fp p s N , ,σ = c D f j js j N J p p Lp = ∞ ∑       / 0 1 2 ψ ( ) ≤ ≤ c D f j js j N J q q Lp = ∞ ∑       / 0 1 2 ψ ( ) = c f Fp q Ns , ,σ ≤ ≤ c D f j js j N J Lp = ∞ ∑       / 0 2 1 2 2 ψ ( ) = c f Fp Ns , , 2 σ , i.e., we obtain two left-hand embeddings. To obtain the right-hand embedding, we will follow Proposition 2.3.2/2 [7]. Note, that for a sequence aj j( ) ≥0 j j s j q q a = ∞ −∑       / 0 1 2 ( )ε ≤ sup j j s j j j q q a ≥ = ∞ −∑       / 0 0 1 2 2 ε ≤ ≤ c a j js jsup ≥0 2 . Then for f ∈ Bpp Nsσ , ISSN 1027-3190. Ukr. mat. Ωurn., 2006, t. 58, #5 CONTINUITY OF CERTAIN PSEUDODIFFERENTIAL OPERATORS IN THE SPACES … 643 f Fpq Nsσ ε− , = c D f j j s j N J q q Lp = ∞ −∑       / 0 1 2 ( ) ( )ε ψ ≤ ≤ c D f j js j N J Lp sup ( ) ≥0 2 ψ ≤ c D f j js j N J p p Lp = ∞ ∑       / 0 1 2 ψ ( ) = c f Bpp Nsσ , , which proves the right-hand embedding. The lemma is proved. Remark 4. Since S ( R n ) is dense in Hp a s, = Fp Ns , , 2 σ , ( )Nj j∈N0 = Nj a j ,2 0 ( ) ∈N , then all the embeddings in Lemma 2 are dense. Denote by a ( D ) the operator with symbol a ( ξ ). For the following theorem we again refer to [6] (see also Theorem 2.3.8 from [12]). Let a ( ξ ) and ( )Nj j∈N0 be as before. For any real s we have 1 +( ) /a D r( ) µ : Bpq Ntσ µ+ , → Bp q Nt , ,σ , 0 < p, q ≤ ∞, isomorphically. Similarly to the Lipschitz spaces of order α one can define the spaces Λλµ ( )t (see [11]), where the function | t | α is substituted by some function λ µ (t). In what follows, we denote by Λ1 the space of Lipschitz functions on R n. Definition 5. Let λ (t) : R n → R+ be a continuous nonnegative function and µ > > 0 be a real number such that 1) λ (t) → 0 as | t | → 0, and λ (t) → ∞ as | t | → ∞; 2) lim ( ) t t t→ + 0 1λµ = ∞; 3) λ (t) has no other zeros except at t = 0. Define Λλµ ( )t = f C f x t f x A tC∈ − − ≤{ }∞ ∞ : ( ) ( ) ( )λµ , and let f t Λ λµ ( ) = f ∞ + sup ( ) ( ) ( )t Cf x t f x t> − − ∞ 0 λµ be the norm in Λλµ ( )t . We need to make an additional assumption about the relation between the operator a (D) and the function λµ( )t . Assumption 1. Assume, that λµ( )t is such that 1 +( )− /a D r( ) µ maps C ∞ continuously into Λλµ ( )t . Of course the choice of such a function λµ( )t may be not unique. Lemma 3. Let σ s = ( )2 0 j s j≥ , N = Nj a r j ,( ) ≥0 be defined as in (1), and the function ( λ µ (t) ) satisfy Assumption 1. Then ISSN 1027-3190. Ukr. mat. Ωurn., 2006, t. 58, # 5 644 V. P. KNOPOVA B N ∞, , 1 0σ ⊂ C∞ ⊂ B N ∞ ∞, ,σ0 (3) and B N ∞, , 1 σµ ⊂ Λλ µ( )t ⊂ B N ∞ ∞, ,σµ . (4) Proof. The proof of (3) is similar to the proof of Proposition 2.5.7 [12]. Let ϕ j N J j ,( ) ∈N0 ∈ Φ N, J , and f ∈ B N ∞, , 1 0σ . Then f L∞ = j j N J L D f x = ∞ ∑ ∞ 1 ϕ , ( ) ( ) ≤ j j N J L D f x = ∞ ∑ ∞1 ϕ , ( ) ( ) = f B N ∞, , 1 0σ . Since ϕ j N J D f x, ( ) ( ) is bounded and continuous (by Paley – Wiener theorem), and hence uniformly continuous in R n, then f ∈ C∞ , and thus we have the left-hand embedding in (3). Now let f ∈ C∞ . Since by B3 the function ϕ j N J x, ( ) is a Fourier multiplier, then f B N ∞ ∞, ,σ 0 = sup ( ), j j N J L D f ∈ ∞N0 ϕ ≤ sup ( ), j j N J L LD f ∈ ∞ ∞ N0 ϕ ≤ c f C∞ , which proves the right-hand embedding. (By ϕ j N J L D, ( ) ∞ we understand the norm of the operator which corresponds to the symbol ϕ ξj N J, ( ) .) By the lifting property of 1 +( )− /a D r( ) µ (see [6]) we get (4) from (3). The lemma is proved. Remark 5. Similarly to Proposition 2.3.2/2 [12], one can prove that B N ∞ ∞ + , ,σµ ε ⊂ ⊂ B N ∞, , 1 σµ for some ε > 0, which leads to B∞ ∞ + , σµ ε ⊂ Λλ µ( )t ⊂ B N ∞ ∞, ,σµ . (5) Proof. We only need to show that B N ∞ ∞ + , ,σµ ε ⊂ B N ∞, , 1 σµ holds for ε > 0, then (5) will follow from (4). Since for a sequence ( )aj j≥0 with aj -finite j j s ja = ∞ ∑ 0 2 ≤ sup ( ) j j s j j ja ≥ + = ∞ −∑ 0 0 2 2ε ε ≤ c a j j s jsup ( ) ≥ + 0 2 ε holds, then for f ∈ B N ∞ ∞ + , ,σµ ε we obtain f B N ∞, , 1 σµ = j j s j N J L D f = ∞ ∑ ∞1 2 ϕ , ( ) ≤ sup ( )( ) , j j s j N J L j jD f ≥ + = ∞ − ∞ ( ) ∑ 0 0 2 2ε εϕ ≤ ≤ c D f j j s j N J L sup ( )( ) , ≥ + ∞ ( ) 0 2 ε ϕ = c f B N ∞ ∞ + , ,σµ ε . Let 0 < µ < 1. Define now by Λλ µ( )t 0 the closure of C0 ∞ with respect to ⋅ Λ λ µ( )t -norm. Similarly to Theorem III.3.3 from [13], we have the following lemma. Lemma 4. The space Λλ µ( )t 0 , 0 < µ < 1, coincides with the space of functions from Λλ µ( )t for which ISSN 1027-3190. Ukr. mat. Ωurn., 2006, t. 58, #5 CONTINUITY OF CERTAIN PSEUDODIFFERENTIAL OPERATORS IN THE SPACES … 645 lim ( ) ( ) ( )t Cf t f t→ ⋅ − − ⋅ ∞ 0 λ µ = 0. (6) Proof. Since C0 ∞ ⊂ Λ1 ⊂ Λλ µ( )t and C0 ∞ is dense in Λ1 , we see, that the space Λ Λ 1 ⋅ λµ ( )t is equivalent to C t 0 ∞ ⋅ Λ λµ ( ) . We will follow the proof given in [13]. Clearly, for all functions from Λ 1 (6) holds. Let f m ∈ Λ 1 and f m → f in Λλµ ( )t . Fix ε > 0. There exists N0 , such that fm Λ1 < c, f fm t − Λ λµ ( ) < ε 2 for all m ≥ N0 and let δ be such that for t < δ we have t tλµ ( ) < ε 2c . Then f x t f x t ( ) ( ) ( ) − − λµ ≤ f x t f x t f x f x t m m( ) ( ) ( ) ( ) ( ) − − − − −( ) λµ + + f x t f x t m m( ) ( ) ( ) − − λµ ≤ f fm t − Λ λµ ( ) + f t t m Λ1 λµ ( ) < ε 2 + ε 2 = ε, and f satisfies (6). Let now f ∈ Λλµ ( )t and satisfy (6). We will show that f belongs to Λλµ ( )t 0 , i.e., we will show that there exists a sequence ( )fm m≥0 from Λ 1 , that converges to f in ⋅ Λ λµ ( )t -norm. Consider f m ( x ) = m f d x x m+ / ∫ 1 ( )τ τ – m f d m 0 1/ ∫ ( )τ τ. Here and further we denote by x x m d + / ∫ … 1 τ = x x m x x m m m n d d 1 1 1 1 1 + +/ / ∫ ∫… … …τ τ , and analogously for 0 1/ ∫ … m dτ . The functions f m , m ≥ 0, are once continuously differentiable (by each x i ), and therefore belong to Λ 1 . Changing the variables, we obtain f m ( x ) = m f x f d m 0 1/ ∫ + −[ ]( ) ( )θ θ θ , which gives f m ( x ) – f ( x ) = m f x f f x d m 0 1/ ∫ + − −[ ]( ) ( ) ( )θ θ θ . Define f x t f x tm( ) ( )+ − −[ ] – f x f xm( ) ( )−[ ] = Ψ ( f m – f, t ); ISSN 1027-3190. Ukr. mat. Ωurn., 2006, t. 58, # 5 646 V. P. KNOPOVA in this notation f fm t − Λ λµ ( ) = f fm C− ∞ + sup ( , ) ( )t mf f t t> − 0 Ψ λµ . Since f ∈ Λλµ ( )t and (6) holds, then for chosen ε > 0 there exists δ > 0 such that for | t | < δ f satisfies f x t f x t ( ) ( ) ( ) + − λµ < ε 2 ∀x ∈ R n. Then Ψ( , ) ( ) f f t t m − λµ = m t f x t f x t f x f x d m λ θ θ θµ ( ) ( ) ( ) ( ) ( ) 0 1/ ∫ + + − + − + +[ ] ≤ ≤ m f x t f x t f x t f x t d m 0 1/ ∫ + + − + + + −    ( ) ( ) ( ) ( ) ( ) ( ) θ θ λ λ θµ µ < m m 1 2 2 ε ε+    = ε. Let | t | ≥ δ. Then Ψ( , ) ( ) f f t t m − λµ = m t f x t f x t f x f x d m 0 1/ ∫ + + − + + + −    λ θ λ θ λ θ θ λ θ θ µ µ µ µ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ≤ ≤ 2 0 1 m f t d t m Λ λµ λ θ λ θ µ µ ( ) ( ) ( ) / ∫ ≤ 2 0 1 C f m d t m Λ λµ λ θ θµ ( ) ( ) / ∫ , where C is such that λ µ− ( )t ≤ C for | t | ≥ δ, and we again may chose large N0 such that for all m ≥ N0 m d m 0 1/ ∫ λ θ θµ ( ) < ε λµ 2C f t Λ ( ) . Therefore f fm t − Λ λµ ( ) < ε for m ≥ N0 , and in such a way f ∈ Λλµ ( )t 0 . Lemma 4 is proved. Let λ : ( 0, 1 ) → R + be a nondecreasing, continuous function, lim ( )t t→0 λ = 0 and let for 1 ≤ p, q ≤ ∞ and M ∈ N Bpq nλ ( )R = f L f t t d t tp p M q q ∈           < ∞         ∫ / : ( , ) ( ) ( ) ( ) 0 1 1 ω λ λ λ , where ω p M f t( , ) = sup ( ) h t p M L u p< ⋅∆ , and ∆ p M is the finite difference of order M in h. In addition, let t � λ( )t tM be increasing, and t � λ δ ( )t t be almost decreasing, then Bpq nλ ( )R = Bpq Nσ1, , ISSN 1027-3190. Ukr. mat. Ωurn., 2006, t. 58, #5 CONTINUITY OF CERTAIN PSEUDODIFFERENTIAL OPERATORS IN THE SPACES … 647 where ( σ 1 ) = ( )2 0 j j≥ , Nj = 1 hj , where hj is such that λ ( hj ) = 2 1− j λ( ) (see [14]). In the following we suppose that λ ( 1 ) = 1. Clearly, if the function λµ ( )t satisfies the conditions above, we obtain from the definition of Λλµ that Λλµ ( )R n = B n ∞∞ λµ ( )R . (7) Moreover, if an operator 1 +( )a D( ) is an isomorphism between Bpq Nσ µ1+ , and Bpq Nσµ , , it is an isomorphism between B∞∞ +σ µ1 and B∞∞ σµ , where the function λ is uniquely determined by a ( ξ ). 4. The continuity of a pseudodifferential operator in generalized Lipschitz spaces. Let the pseudodifferential operator be of the form p ( x, D ) f ( x ) = R n f x y f x x dy \ ( ) ( ) ( , ) 0{ } ∫ − −( )ν , (8) where ν( , )x dy is a Lévy measure, which depends on x. Theorem 1. Let p ( x, D ) be as in (8), ν( , )x dy = g ( x, y ) dy, where the function g ( x, y ) is differentiable in x and satisfies sup ( ) ( , ) ( , ) x y h y h n y g x y dy g x y dy ∈ < + ≥ ∫ ∫′ + ′       R 1 1 1 λµ < ∞ (9) for any direction h, and sup ( ) ( ) ( , ) ( ) ( , ) x y h y h h n h y g x y dy h g x y dy ∈ − < + > ∫ ∫+       R λ λ λµ µ 1 → 0 as | h | → 0, (10) where ′g x yh( , ) is the derivative of g ( x, y ) with respect to x in direction h. Then p ( x, D ) : Λλµ+1 0 ( )t → Λλµ ( )t 0 . Proof. Let f ∈ Λλµ+1 0 ( )t . For such f we have sup ( ) ( ) ( )y Cf x y f x y> + − − ∞ 0 1λµ < ∞. Since p x D f C( , ) ∞ ≤ c f tΛλ µ ( ) +1 , (11) we will check weather the following inequality is satisfied: sup ( ) ( ) ( ) ( , ) h h f x h y f x h x h dy n> ∫ − − − −( ) − 0 1 λ νµ R – – R n f x y f x x h dy C ∫ − −( ) − ∞ ( ) ( ) ( , )ν ≤ c f tΛλ µ ( ) +1 . ISSN 1027-3190. Ukr. mat. Ωurn., 2006, t. 58, # 5 648 V. P. KNOPOVA Again, for | h | ≥ 1 we obtain 1 λ νµ ( ) ( ) ( ) ( , ) h f x h y f x h x h dy n R ∫ − − − −( ) − – R n f x y f x x dy∫ − −( )( ) ( ) ( , )ν ≤ ≤ C f x h y f x h x h dy n R ∫ − − − −( ) −( ) ( ) ( , )ν + + C f x y f x x dy n R ∫ − −( )( ) ( ) ( , )ν ≤ 2C p x D f C( , ) ∞ , and then for f ∈ Λλµ+1 0 ( )t sup ( , ) ( ) ( , ) ( ) ( )h Cp x h D f x h p x D f x h≥ − − − ∞ 1 λµ ≤ c f tΛλ µ ( ) +1 . (12) Next consider the case | h | < 1. It is convenient to decompose p x h D f x h( , ) ( )− − – p x D f x( , ) ( ) = = R n f x h y f x h f x y f x g x y dy∫ − − − −( ) − − −( ){ }( ) ( ) ( ) ( ) ( , ) + + R n f x h y f x h g x h y g x y dy∫ − − − −( ) − −( )( ) ( ) ( , ) ( , ) = I1 + I2 , and consider I1 and I2 separately. From the mean-value theorem we have g x h y g x y( , ) ( , )− − = h g x yh′ ( , )0 for some x0 , where ′g x yh( , ) is the derivative of g with respect to x in direction h, and consequently in view of (9) we obtain I C2 ∞ ≤ h f x h y f x h y y g x y dy y C y hsup ( ) ( ) ( ) ( ) ( , ) > + < +− − − − ′∞ ∫ 0 1 1 1 0λ λµ µ + + 2 1 0h f g x y dyC y h∞ ≥ ∫ ′ ( , ) ≤ h f t Λ λµ +1 ( ) . Therefore for I2 we obtain I h C2 ∞ λµ ( ) ≤ h h f tλµ λµ( ) ( ) Λ +1 = o h f t ( ) +Λ λµ 1 ( ) as | h | → 0. For I h C1 ∞ λµ ( ) we have using (9) and (10) I h C1 ∞ λµ ( ) = = 1 λ µµ ( ) ( ) ( ) ( ) ( ) ( , ) ( ) h f x h y f x h f x y f x g x y dy y h< ∫ − − − −( ) − − −( ){ }   + ISSN 1027-3190. Ukr. mat. Ωurn., 2006, t. 58, #5 CONTINUITY OF CERTAIN PSEUDODIFFERENTIAL OPERATORS IN THE SPACES … 649 + y h C f x h y f x h f x y f x g x y dy ≥ ∫ − − − −( ) − − −( ){ }   ∞ ( ) ( ) ( ) ( ) ( , ) ( )µ ≤ ≤ sup ( ) ( ) ( ) ( ) ( )y Cf x h y f x h f x y f x y> + − − − −( ) − − −( ) ∞ 0 1λµ × × 1 0 1 λ λµ µ ( ) ( ) ( , ) h y g x y dy h ∫ + + + sup ( ) ( ) ( ) ( ) ( )0 1 1 < < + − − − −( ) − − −( ) ∞ h Cf x h y f x y f x h f x hλµ λ( ) ( , )h g x y dy h ∞ ∫ ≤ ≤ C f o h t Λ λµ+ ( ) 1 ( ) as h → 0, and thus sup ( , ) ( ) ( , ) ( ) ( )h Cp x h D f x h p x D f x h≤ − − − ∞ 1 λµ ≤ C f t Λ λµ+1 ( ) . (13) Combining (13) with (12) and (11), we arrive at p x D f t ( , ) ( ) Λ λµ ≤ C f t Λ λµ+1 ( ) . Moreover, we can see from (13) that lim ( , ) ( ) ( , ) ( ) ( )h Cp x h D f x h p x D f x h→ − − − ∞ 0 λµ = 0, which completes the proof. 5. Continuity of a pseudodifferential operator in some spaces of generalized smoothness. In this section we give the theorem on the continuity of some pseudodifferential operator in the Besov spaces of generalized smoothness. We start with an auxiliary theorem, see [13] or [1] for the reference. Theorem 2. Let X X0 0 , ⋅( ) and X X1 1 , ⋅( ) be two Banach spaces as above, and let Y Y0 0 , ⋅( ) and Y Y1 1 , ⋅( ) be two Banach spaces satisfying the same conditions as X0 and X 1 . Suppose that T : X0 → X 1 is a bounded linear operator such that A f ∈ Yk for f ∈ Xk , and A f Yk ≤ M fk Xk , k = 0, 1. Then A maps continuously Xθ = X X0 1,[ ]θ into Yθ = Y Y0 1,[ ]θ, and we have the estimate: A f Yθ ≤ M M f X0 1 1 −θ θ θ , θ ∈ [ 0, 1 ]. Next we need a theorem which gives the continuity of pseudodifferential operator between the generalized Bessel potential spaces in L2 . For our convenience we quote the necessary conditions. Let us split the symbol p ( x, D ) into two parts: p ( x, ξ ) = p1 ( ξ ) + p2 ( x, ξ ), (14) where p1 : R n → C is a continuous negative definite function, and p2 : R n × R n → C is continuous. ISSN 1027-3190. Ukr. mat. Ωurn., 2006, t. 58, # 5 650 V. P. KNOPOVA Assumption 2. We assume that the function p ( x, ξ ) admits the decomposition (14), where p1 : R n → C is some continuous negative definite function, and p2 : R n × × R n → C is continuous, and suppose that the following conditions are satisfies: C1 . The function p1 satisfies for some γ0 > 0 and γ1 , γ2 ≥ 0: γ0 a ( ξ ) ≤ Re p1 ( ξ ) ≤ γ1 a ( ξ ) for all | ξ | ≥ 1 and | Im p1 ( ξ ) | ≤ γ2 Re p1 ( ξ ) for all ξ ∈ R n. C2 . For m ∈ N0 the function x � p2 ( x, ξ ) belongs to C m, and the estimate ∂ ξα x q x2( , ) ≤ ϕ ξα ( ) ( )x a1 +( ) holds for all α ∈ N0 n , | α | ≤ m, with ϕα ∈ L1 . (See Assumption 2.3.5 from [2] for the reference.) For the following theorem we refer to Proposition 2.3.6 and Theorem 2.3.11 from [2]. Theorem 3. Let the conditions C1 and C2 with m ≥ n + [ t ] + 1 of Assumption 2 hold for the symbol p ( x, ξ ) of the pseudodifferential operator p ( x, D ). Then p ( x, D ) is continuous from H a, t + 2 to H a, t for any t ≥ 0. Theorem 4. Let p ( x, D ) be as in Theorem 1, and in addition assume that it satisfies the conditions of Theorem 3, and for large | ξ | it holds a ( ξ ) ≥ | ξ | α, 0 < α < 2 . Then for s > p n p− + + −    1 2 2 α µ( ) , p ≥ 2, p ( x, D ) : Bp p Ns , ,σ +1 → Bp p Ns , ,σ continuously, where N = ( )Nj j≥0 , Nj = ( ) ( )a j−1 22 . Proof. From Theorem 3 we have p ( x, D ) : Ha t 2 2, + → Ha t 2 , (15) continuously, in particular, (15) holds for all t > 2 2 + n α . For such t the space H a, 2 is continuously embedded into C∞ . We know that B N ∞∞ +σ µ1 , = B∞∞ +λ µ1 = Λλµ+1( )t , µ ≥ 0. By Theorem 1 the operator p ( x, D ) is continuous from Λ � λµ+1( )t = B N� ∞∞ +σ α1 , to Λ � λµ ( )t = B N� ∞∞ σα , , i.e., p x D f B N( , ) , � ∞ ∞σα ≤ c f B N � ∞ ∞ +σ α1 , . Further, for t > 2 2 + n α , we have B t N 22 1σ + , ⊂ Λ1 ⊂ B N� ∞∞ +σ α1 , , B t N 22 σ , ⊂ Λ1 ⊂ B N� ∞∞ σα , , and these embeddings are dense. ISSN 1027-3190. Ukr. mat. Ωurn., 2006, t. 58, #5 CONTINUITY OF CERTAIN PSEUDODIFFERENTIAL OPERATORS IN THE SPACES … 651 Since the norms in the interpolation spaces B B t sN N 22 σ σ θ , ,, ∞∞[ ] and B B t sN N 22 σ σ θ , ,, � ∞∞     coincide for t, s > 0, 0 < θ < 1, we obtain by Theorem 2 that p ( x, D ) is continuous from Bp p Ns , ,σ +1 to Bp p Ns , ,σ for p = 2 1 − θ and s = ( 1 – θ ) t + θ µ = 2 2t p p + −( )µ . Since t > 2 2 + n α then s > p n p− + + −    1 2 2 α µ( ) = s̃ , and since s depends on t linearly then for any s0 > s̃ there exists t0 > 2 2 + n α such that s0 = 2 20t p p + −( )µ . Therefore p ( x, D ) is continuous between Bp p Ns , ,σ +1 and Bp p Ns , ,σ for all s > p n− +  1 2 α + + ( )p − )2 µ and p ≥ 2. Theorem 4 is proved. Theorem 4 together with Lemma 2 give us that under the conditions of Theorem 4 p ( x, D ) : Fp Ns , , 2 1σ + → Bp p Ns , ,σ for s > p n p− + + −    1 2 2 α µ( ) and p ≥ 2 continuously, or to make our notation easier we will write p ( x, D ) : Hp a s, +1 → Bp p Ns , ,σ , where Hp a s, = Fp Ns , , 2 σ is an a-Bessel potential space. Theorem 4 allows us to use such operators p ( x, D ) as perturbations of some generators of Lp-sub-Markovian semigroups. To do this, we will quote Theorem 2.8.1 from [2], from where our result easily follows. Theorem 5. Let ( – A, D ( A ) ) be a pseudodifferential operator which generates a sub-Markovian semigroup in Lp , 1 < p < ∞. If an operator p ( x, D ) is L p- dissipative, A-bounded, i.e., D ( p ( x, D ) ) ⊂ D ( A ), and for some ε ∈ [ 0, 1 ) and δ > 0 p x D u Lp ( , ) ≤ ε Au Lp + δ u Lp , u ∈ D ( A ), and in addition ( – A – p ( x, D ), D ( A ) ) is an L p-Dirichlet operator, then ( – A – – p ( x, D ), D ( A ) ) is a generator of an Lp-sub-Markovian semigroup. We arrive at the following theorem: Theorem 6. Let −( )ψ ψ( ), ,D Hp 2 be the generator of an Lp-sub-Markovian semigroup, and let p ( x, D ) satisfy conditions of Theorem 4. Assume that for ψ , such that ˜ ( )( )ψ λ( )     − −1 1 1 x x = 1, (16) the operator ˜ ( ), ˜ ,ψ ψD H 2( ) is ψ ( D )-bounded. Then the operator ( – ψ ( D ) – p ( x, D ), Hp ψ, 2 ) is the generator of an Lp-sub-Markovian semigroup. Proof. From (7) we see, that if ψ̃ satisfies (16) and p ( x, D ) satisfies the conditions of Theorem 4, then p ( x, D ) is continuous from Hp s˜ ,ψ +1 to Bp p Ns , , ˜σ , where Ñ = Ñ j j( ) ≥0 , Ñ j = sup : ˜ ( )ξ ψ ξ ≤{ }22 j . Since our operator is a Dirichlet operator (as an operator with continuous negative ISSN 1027-3190. Ukr. mat. Ωurn., 2006, t. 58, # 5 652 V. P. KNOPOVA define symbol), and therefore it is dissipative, the statement of the theorem follows from Theorem 5. Acknowledgement. The author would like to thank Prof. Walter Farkas for fruitful discussions and remarks. 1. Jacob N. Pseudodifferential operators and Markov processes. Vol. 1. Fourier analysis and semigroups. – London: Imper. Coll. Press, 2001. – 493 p. 2. Jacob N. Pseudodifferential operators and Markov processes. Vol. 2. Generators and their potential theory.– London: Imper. Coll. Press, 2002. – 453 p. 3. Hoh W. A symbolic calculus for pseudodifferential operators generating Feller semigroups // Osaka J. Math. – 1998. – 35. – P. 798 – 820. 4. Hoh W. Pseudodifferential operators generating Markov processes. – Bielefeld: Habilitationsschrift, 1998. 5. Farkas W. Function spaces of generalized smoothness and pseudodifferential operators associated to a continuous negative definite function. – Munich: Habilitationsschrift, 2003. – 150 p. 6. Farkas W., Leopold H.-G. Characterization of function spaces of generalized smoothness // Ann. mat. pures et appl. – 2004. 7. Kaljabin G. A. Description of the traces for anisotropic Triebel – Lizorkin type spaces // Tr. Mat. Inst. Akad. Nauk SSSR. – 1979. – 150. – P. 160 – 173. 8. Kaljabin G. A. Theorems on extension, multiplicators and diffeomorphisms for generalized Sobolev – Liouville classes on domains with Lipschitz boundary // Tr. Mat. Inst. Akad. Nauk SSSR. – 1985. – 172. – P. 173 – 186. 9. Farkas W., Jacob N., Schilling R. Function spaces related to continuous negative definite functions: ψ-Bessel potential spaces // Diss. Math. – 2001. – 393. – P. 1 – 62. 10. Triebel H. Interpolation theory, functional spaces, differential operators. – Amsterdam: North Holland Publ. Co., 1978. – 207 p. 11. Kufner A., John O., Fucik S. Function spaces. – Leyden: Noordhoff Int. Publ., 1977. – 454 p. 12. Triebel H. Theory of function spaces // Monogr. Math. – 1983. – 78. – 284 p. 13. Krein S., Petunin Yu., Semenov E. Interpolation of linear operators. – Moscow: Nauka, 1978. – 400 p. 14. Kaljabin G. A., Lizorkin P. I. Spaces of functions of generalized smoothness // Math. Nachr. – 1987. – 133. – P. 7 – 32. Received 26.10.2004, after revision — 18.03.2005 ISSN 1027-3190. Ukr. mat. Ωurn., 2006, t. 58, #5