On iteration stability of the Birkhoff center with respect to power 2

It is proved that the Birkhoff center of a homeomorphism on an arbitrary metric space coincides with the Birkhoff center of its power 2. Доведено, що центр Біркгофа гомеоморфізму на довільному метричному просторі збігається з центром Біркгофа його степеня 2....

Full description

Saved in:
Bibliographic Details
Published in:Український математичний журнал
Date:2006
Main Authors: Vlasenko, I.Yu., Polulyakh, E.O.
Format: Article
Language:English
Published: Інститут математики НАН України 2006
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/165125
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:On iteration stability of the Birkhoff center with respect to power 2 / I.Yu. Vlasenko, E.O. Polulyakh // Український математичний журнал. — 2006. — Т. 58, № 5. — С. 705–707. — Бібліогр.: 4 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-165125
record_format dspace
spelling Vlasenko, I.Yu.
Polulyakh, E.O.
2020-02-11T20:57:59Z
2020-02-11T20:57:59Z
2006
On iteration stability of the Birkhoff center with respect to power 2 / I.Yu. Vlasenko, E.O. Polulyakh // Український математичний журнал. — 2006. — Т. 58, № 5. — С. 705–707. — Бібліогр.: 4 назв. — англ.
1027-3190
https://nasplib.isofts.kiev.ua/handle/123456789/165125
513.83
It is proved that the Birkhoff center of a homeomorphism on an arbitrary metric space coincides with the Birkhoff center of its power 2.
Доведено, що центр Біркгофа гомеоморфізму на довільному метричному просторі збігається з центром Біркгофа його степеня 2.
en
Інститут математики НАН України
Український математичний журнал
Короткі повідомлення
On iteration stability of the Birkhoff center with respect to power 2
Ітераційна стійкість центра Біркгофа відносно степеня 2
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On iteration stability of the Birkhoff center with respect to power 2
spellingShingle On iteration stability of the Birkhoff center with respect to power 2
Vlasenko, I.Yu.
Polulyakh, E.O.
Короткі повідомлення
title_short On iteration stability of the Birkhoff center with respect to power 2
title_full On iteration stability of the Birkhoff center with respect to power 2
title_fullStr On iteration stability of the Birkhoff center with respect to power 2
title_full_unstemmed On iteration stability of the Birkhoff center with respect to power 2
title_sort on iteration stability of the birkhoff center with respect to power 2
author Vlasenko, I.Yu.
Polulyakh, E.O.
author_facet Vlasenko, I.Yu.
Polulyakh, E.O.
topic Короткі повідомлення
topic_facet Короткі повідомлення
publishDate 2006
language English
container_title Український математичний журнал
publisher Інститут математики НАН України
format Article
title_alt Ітераційна стійкість центра Біркгофа відносно степеня 2
description It is proved that the Birkhoff center of a homeomorphism on an arbitrary metric space coincides with the Birkhoff center of its power 2. Доведено, що центр Біркгофа гомеоморфізму на довільному метричному просторі збігається з центром Біркгофа його степеня 2.
issn 1027-3190
url https://nasplib.isofts.kiev.ua/handle/123456789/165125
citation_txt On iteration stability of the Birkhoff center with respect to power 2 / I.Yu. Vlasenko, E.O. Polulyakh // Український математичний журнал. — 2006. — Т. 58, № 5. — С. 705–707. — Бібліогр.: 4 назв. — англ.
work_keys_str_mv AT vlasenkoiyu oniterationstabilityofthebirkhoffcenterwithrespecttopower2
AT polulyakheo oniterationstabilityofthebirkhoffcenterwithrespecttopower2
AT vlasenkoiyu íteracíinastíikístʹcentrabírkgofavídnosnostepenâ2
AT polulyakheo íteracíinastíikístʹcentrabírkgofavídnosnostepenâ2
first_indexed 2025-11-25T21:08:33Z
last_indexed 2025-11-25T21:08:33Z
_version_ 1850551402276847616
fulltext K�O�R�O�T�K�I���P�O�V�I�D�O�M�L�E�N�N�Q UDC 513.83 I. Yu. Vlasenko, E. O. Polulyakh (Inst. Math. Nat. Acad. Sci. Ukraine, Kyiv) ON ITERATION STABILITY OF THE BIRKHOFF CENTER WITH RESPECT TO POWER 2 * ITERACIJNA STIJKIST| CENTRA BIRKHOFA VIDNOSNO STEPENQ 2 It is proved that the Birkhoff center of a homeomorphism on an arbitrary metric space coincides with the Birkhoff center of its power 2. Dovedeno, wo centr Birkhofa homeomorfizmu na dovil\nomu metryçnomu prostori zbiha[t\sq z centrom Birkhofa joho stepenq 2. It is known that nonwandering set of a homeomorphism can change when we take a power of the homeomorphism. Such examples are shown in [1, 2]. On the other hand, the sets of recurrent points [3], chain recurrent points [4], and the limit set do not change when we take a power. A natural question arises: What can happen with the Birkhoff center of a dynamical system when we take its power? Here, we prove that the Birkhoff center of dynamical systems on arbitrary metric spaces coincides with the Birkhoff center of their power 2. Let M be a metric space and let f, g : M → M be homeomorphisms of M. Denote by Ω ( f ) the set of nonwandering points of f. Iterate the construction of the nonwandering set. Let Ω 1 ( f ) = Ω ( f ). Define by induction Ω n + 1 ( f ) = Ω Ωf n f( )( ) . Denote by Ω ω ( f ) the intersection of the obtained sequence of embedded closed invariant sets. This process can be continued using transfinite induction. According to the Zorn lemma, the process will stop at an ordinal number α for which Ω α ( f ) = = Ω Ωf fα ( )( ) . The obtained closed invariant set is called the Birkhoff center and is denoted by B C ( f ). Lemma 1. Ω ( g n ) ⊆ Ω ( g ). Proof. Let x ∈ M \ Ω ( g ) be a wandering point of g. By definition, there exists a neighborhood U of x such that g k ( U ) ∩ U = ∅. Then gn k ( U ) ∩ U = f k ( U ) ∩ U = = ∅, k ∈Z, and x is a wandering point of f. Thus, M \ Ω ( g ) ⊆ M \ Ω ( gn ) and Ω ( g ) ⊇ Ω ( gn ). Definition 1. A point ξ is called tied with a point µ by g if for all neighborhoods U (µ ) and V (ξ ) of points µ and ξ , correspondingly, there exists N ∈ Z such that U ( µ ) ∩ g VN ( )ξ( ) ≠ ∅. Definition 2. If one can choose N ∈ Z – ( N ∈ Z + ) in the previous definition, then the point ξ is called α -tied ( ω-tied) with the point µ . The point α- and ω-tied with the point µ is called bi-tied with the point µ. * Partially supported by NFBD of Ukraine (grant 01.07 / 00132). © I. YU. VLASENKO, E. O. POLULYAKH, 2006 ISSN 1027-3190. Ukr. mat. Ωurn., 2006, t. 58, # 5 705 706 I. YU. VLASENKO, E. O. POLULYAKH Definition 3. Points ξ0 , … , ξn – 1 are called cyclically tied with a cycle length n if there exists k ∈ 1, … , n – 1 such that for each i = 1, … , n – 1, the point ξi is ω- (α-)tied with the point ξ m , m = k + i ( mod n ). Lemma 2. Let ξ ∈ Ω ( g ) \ Ω ( gn ). Then the trajectories O g g i n ( )ξ( ) , i = 1, … … , n – 1, related to g n on which the trajectory Og ( ξ ) is split are wandering cyclically tied ones. Proof. Let ξ ∈ Ω ( g ) \ Ω ( gn ). Since ξ ∈ Ω ( g ), we have ∀ U (ξ ) ∃ m : g m ( U (ξ ) ) ∩ U (ξ ) ≠ ∅. Further, since ξ ∉ Ω ( gn ), ∀ l ∈ Z : g l n ( U (ξ ) ) ∩ U (ξ ) ≠ ∅. We obtain that m ≠ 0 mod n and, hence, ξ and g m ( ξ ) belong to different trajectories related to g n. Choose U (ξ ) to be the set B1 / p (ξ ) of 1 / p-neighborhoods of the point ξ, p ∈ N. Since n is finite, but the set of values of p is infinite, there exists k ≠ 0 mod n such that m (p ) = k mod n for infinite number of values of p in the previous formulae. Show that ξ is tied with g k ( ξ ). Let V1 ( ξ ) and V2 ( g k (ξ ) ) be arbitrary neighborhoods of points ξ and g k ( ξ ). Choose p such that m (p ) = t n + k to be large enough for inclusions B 1 / p (ξ ) ⊂ V 1 ( ξ ) and g k ( B1 / p (ξ ) ) ⊂ V 2 ( g k (ξ ) ). Then g t n + k ( B1 / p (ξ ) ) ∩ B1 / p (ξ ) ≠ ∅ and, hence, V1 ( ξ ) ∩ g V gtn k 2 ( )ξ( )( ) ≠ ∅. Cyclicity of tying follows from the fact that g maps tied points into tied ones. The lemma is proved. Theorem 1. A nonwandering set coinciding with the whole space is iteration stable with respect to power 2. Proof. Suppose on the contrary that M = Ω ( f ) ≠ Ω ( f 2 ). Let x ∈ Ω ( f ) \ Ω ( f 2 ). Then, according to Lemma 2, x and y = f ( x ) are tied: ∀ n ≥ 1 ∃ an ∈ B1 / n ( x ) ∃ An : f aA n n ( ) ∈ B1 / n ( y ). Assume for definiteness that x and y are ω-tied (including the bi-tied case too). Then An > 0. Otherwise, x and y are α-tied, and this case reduces to previous one but with f – 1 instead of f, because by definition the nonwandering sets of f and f – 1 coincide. Note that we can assume all an to be wandering points of f 2 because the set of wandering points is open. Denote bn = f f aA n n− ( )1 ( ) . The sequence f aA n n ( ) tends to y. The sequence ( bn ) tends to x by continuity. Denote with Bε ( x ) the open ball of radius ε around the point x. According to Lemma 2, b n and f aA n n ( ) are tied. Then ∀ n ≥ 1 ∀ m ≥ ≥ 1 ∃ cm n ∈ B1 / m ( bn ) ∃ Km n : f cK mn mn ( ) ∈ B f am A n n 1/ ( )( ) . Similarly, we can assume cm n to be wandering points of f 2. Since bn and f aA n n ( ) are tied, there exists a subsequence such that either bn and f aA n n ( ) are ω-tied or bn and f aA n n ( ) are α-tied. Switching to such subsequence, we can assume that all bn and f aA n n ( ) are ω-tied (or α-tied). Assume that they are ω-tied. Then Km n > 0. Consider the sequence ( cn n ). By construction, ( cn n ) tends to x and f cA nn n−( )( ) tends to y. But f cK nn nn ( )( ) also tends to y. Since An > 0 and Km n > 0, Kn n ≠ – An . We obtain that the point y is self- tied and, hence, is nonwandering. Assume that they are α-tied. Consider the sequence f – 1 ( cn n ). By continuity, it tends to y. According to Lemma 2, f – 1 ( cm n ) and ( cm n ) are tied. The further proof ISSN 1027-3190. Ukr. mat. Ωurn., 2006, t. 58, #5 ON ITERATION STABILITY OF THE BIRKHOFF CENTER WITH RESPECT … 707 is reduced to the considered cases. If we can choose a subsequence from f – 1 ( cn n ) which consists of points ω-tied to their images, then, repeating the reasons for ω-tied bn and f aA n n ( ) , we obtain that x is nonwandering point. Otherwise, bn and f aA n n ( ) are α-tied and the sequences f – 1 ( cm n ) and ( cm n ) which tie them are also α-tied. This case reduces by substituting f with f – 1 to already considered one when points are ω-tied and the sequences which tie them are also ω-tied. The theorem is proved. Lemma 3. B C ( g n ) ⊆ B C ( g ). Proof. Consider the family of nonwandering sets in the definition of the Birkhoff center Ω ( f ) = Ω 1 ( f ) ⊇ Ω 2 ( f ) ⊇ … ⊇ Ω ω ( f ) ⊇ Ω ω + 1 ( f ) ⊇ … indexed with ordinal numbers. The family is ordered by inclusion. At that relations, Ω α ( f ) ⊇ Ω β ( f ) and α ≤ β are equivalent. Consider the same family for f n. Prove that Ω λ ( f n ) ⊆ Ω λ ( f ) for each ordinal λ using transfinite induction. When λ = 1, it is Lemma 1. Let it be true for each α < λ. Show that it is true for λ. If λ is limit ordinal, then by construction, Ω λ ( f ) = β λ β<∩ Ω ( )f ⊇ β λ β<∩ Ω ( )f n = = Ω λ ( f n ). Otherwise, λ has previous ordinal λ̂ . According to inductive proposition, Ω ˆ ( ) λ f ⊇ Ω ˆ ( ) λ f n . Denote f λ̂ = f fΩ ˆ ( ) λ : Ω ˆ ( ) λ f → Ω ˆ ( ) λ f and ′f λ̂ = f n f nΩ ˆ ( ) λ : Ω ˆ ( ) λ f → → Ω ˆ ( ) λ f . Note that Ω f λ̂( ) ⊇ Ω f n λ̂( )( ) according to Lemma 1 and ′f λ̂ = = f n f nˆ ( )ˆλ λ ( ) Ω . Hence, Ω λ ( f ) = Ω Ωf fˆ ( ) λ ( ) = Ω f λ̂( ) ⊇ Ω f n λ̂( )( ) ⊇ ⊇ Ω Ωf n f nˆ ( )ˆλ λ ( )    = Ω ′( )f λ̂ = Ω Ωf n f n ˆ ( ) λ     = Ω λ ( f n ). The second inclusion follows from the fact that the nonwandering set of a map cannot be smaller that the nonwandering set of its restriction. Let λ, λ ′ be depths of centers B C ( f ) and B C ( f n ), correspondingly. Denote β = max ( λ, λ ′ ). Then B C ( f ) = Ω β ( f ) ⊇ Ω β ( f n ) = B C ( f n ). The lemma is proved. It follows that the iteration stability of Birkhoff center is equivalent to the iteration stability of nonwandering set coinciding with the whole space. As a consequence, we have the following theorem: Theorem 2. The Birkhoff center is iteration stable with respect to power 2. 1. Coven E., Nitecki Z. Nonwandering sets of the powers of maps of the interval // Ergod. Theory and Dynam. Systems. – 1981. – 1. – P. 9 – 31. 2. Savada K. On the iterations of diffeomorphisms without C 0 -Ω-explosions: an example // Proc. Amer. Math. Soc. – 1980. – 79, # 1. – P. 110 – 112. 3. Gottschalk W. H. Powers of homeomorphisms with almost periodic properties // Bull. Amer. Math. Soc. – 1944. – 50. – P. 222 – 227. 4. Conley C. Isolated invariant sets and the Morse index // CBMS Reg. Reg. Conf. Ser. Math. – Providence: Amer. Math. Soc., 1978. – 38. Received 30.10.2005 ISSN 1027-3190. Ukr. mat. Ωurn., 2006, t. 58, # 5