Fibonacci lengths of all finite p-groups of exponent p²
The Fibonacci lengths of finite p-groups were studied by Dikici and coauthors since 1992. All considered groups are of exponent p and the lengths depend on the Wall number k(p). The p-groups of nilpotency class 3 and exponent p were studied in 2004 also by Dikici. In the paper, we study all p-groups...
Gespeichert in:
| Veröffentlicht in: | Український математичний журнал |
|---|---|
| Datum: | 2013 |
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2013
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/165319 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Fibonacci lengths of all finite p-groups of exponent p² / B. Ahmadi, H. Doostie // Український математичний журнал. — 2013. — Т. 65, № 5. — С. 603–610. — Бібліогр.: 20 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | The Fibonacci lengths of finite p-groups were studied by Dikici and coauthors since 1992. All considered groups are of exponent p and the lengths depend on the Wall number k(p). The p-groups of nilpotency class 3 and exponent p were studied in 2004 also by Dikici. In the paper, we study all p-groups of nilpotency class 3 and exponent p². Thus, we complete the study of Fibonacci lengths of all p-groups of order p⁴ by proving that the Fibonacci length is k(p²).
Довжини Фібоначчі скінченних p-rpyn вивчалися Дікічі та співавторами з 1992 року. Всі групи, що розглядалися, були групами експоненти p, а всі довжини залежали від числа Уолла k(p). p-Групи класу нільпотентності 3 i експоненти p були також досліджені Дікічі у 2004 році. У даній статті ми вивчаємо всі p-групи класу нільпотентності 3 і експоненти p². Цим завершується дослідження довжини Фібоначчі всіх p-груп порядку p⁴; при цьому доведено, що довжина Фібоначчі дорівнює k(p²).
|
|---|---|
| ISSN: | 1027-3190 |