Generalizations of ⊕ -supplemented modules

We introduce ⊕-radical supplemented modules and strongly ⊕-radical supplemented modules (briefly, srs⊕-modules) as proper generalizations of ⊕-supplemented modules. We prove that (1) a semilocal ring R is left perfect if and only if every left R-module is an ⊕-radical supplemented module; (2) a co...

Full description

Saved in:
Bibliographic Details
Published in:Український математичний журнал
Date:2013
Main Authors: Türkmen, B.N., Pancar, A.
Format: Article
Language:English
Published: Інститут математики НАН України 2013
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/165329
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Generalizations of ⊕ -supplemented modules / B.N. Türkmen, A. Pancar // Український математичний журнал. — 2013. — Т. 65, № 4. — С. 555-564. — Бібліогр.: 15 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:We introduce ⊕-radical supplemented modules and strongly ⊕-radical supplemented modules (briefly, srs⊕-modules) as proper generalizations of ⊕-supplemented modules. We prove that (1) a semilocal ring R is left perfect if and only if every left R-module is an ⊕-radical supplemented module; (2) a commutative ring R is an Artinian principal ideal ring if and only if every left R-module is a srs⊕-module; (3) over a local Dedekind domain, every ⊕-radical supplemented module is a srs⊕-module. Moreover, we completely determine the structure of these modules over local Dedekind domains. Введено поняття ⊕-радикальних доповнюваних модулiв та сильно ⊕-радикальних доповнюваних модулiв (скорочено srs⊕-модулiв) як вiдповiдних узагальнень ⊕-доповнюваних модулiв. Доведено, що: (1) напiвлокальне кiльце R є досконалим злiва тодi i тiльки тодi, коли кожен лiвий R-модуль є ⊕-радикальним доповнюваним модулем; (2) комутативне кiльце R є артiновим кiльцем головних iдеалiв тодi i тiльки тодi, коли кожен лiвий R-модуль є srs⊕-модулем; (3) над локальною дедекiндовою областю кожен ⊕-радикальний доповнюваний модуль є srs⊕-модулем. Повнiстю визначено структуру цих модулiв над локальними дедекiндовими областями.
ISSN:1027-3190