Generalizations of ⊕ -supplemented modules
We introduce ⊕-radical supplemented modules and strongly ⊕-radical supplemented modules (briefly, srs⊕-modules) as proper generalizations of ⊕-supplemented modules. We prove that (1) a semilocal ring R is left perfect if and only if every left R-module is an ⊕-radical supplemented module; (2) a co...
Saved in:
| Published in: | Український математичний журнал |
|---|---|
| Date: | 2013 |
| Main Authors: | , |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2013
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/165329 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Generalizations of ⊕ -supplemented modules / B.N. Türkmen, A. Pancar // Український математичний журнал. — 2013. — Т. 65, № 4. — С. 555-564. — Бібліогр.: 15 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | We introduce ⊕-radical supplemented modules and strongly ⊕-radical supplemented modules (briefly, srs⊕-modules) as
proper generalizations of ⊕-supplemented modules. We prove that (1) a semilocal ring R is left perfect if and only if every
left R-module is an ⊕-radical supplemented module; (2) a commutative ring R is an Artinian principal ideal ring if and
only if every left R-module is a srs⊕-module; (3) over a local Dedekind domain, every ⊕-radical supplemented module
is a srs⊕-module. Moreover, we completely determine the structure of these modules over local Dedekind domains.
Введено поняття ⊕-радикальних доповнюваних модулiв та сильно ⊕-радикальних доповнюваних модулiв (скорочено
srs⊕-модулiв) як вiдповiдних узагальнень ⊕-доповнюваних модулiв. Доведено, що: (1) напiвлокальне кiльце R є
досконалим злiва тодi i тiльки тодi, коли кожен лiвий R-модуль є ⊕-радикальним доповнюваним модулем; (2) комутативне кiльце R є артiновим кiльцем головних iдеалiв тодi i тiльки тодi, коли кожен лiвий R-модуль є srs⊕-модулем;
(3) над локальною дедекiндовою областю кожен ⊕-радикальний доповнюваний модуль є srs⊕-модулем. Повнiстю
визначено структуру цих модулiв над локальними дедекiндовими областями.
|
|---|---|
| ISSN: | 1027-3190 |