Generalizations of ⊕ -supplemented modules
We introduce ⊕-radical supplemented modules and strongly ⊕-radical supplemented modules (briefly, srs⊕-modules) as proper generalizations of ⊕-supplemented modules. We prove that (1) a semilocal ring R is left perfect if and only if every left R-module is an ⊕-radical supplemented module; (2) a co...
Gespeichert in:
| Datum: | 2013 |
|---|---|
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2013
|
| Schriftenreihe: | Український математичний журнал |
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/165329 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Generalizations of ⊕ -supplemented modules / B.N. Türkmen, A. Pancar // Український математичний журнал. — 2013. — Т. 65, № 4. — С. 555-564. — Бібліогр.: 15 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | We introduce ⊕-radical supplemented modules and strongly ⊕-radical supplemented modules (briefly, srs⊕-modules) as
proper generalizations of ⊕-supplemented modules. We prove that (1) a semilocal ring R is left perfect if and only if every
left R-module is an ⊕-radical supplemented module; (2) a commutative ring R is an Artinian principal ideal ring if and
only if every left R-module is a srs⊕-module; (3) over a local Dedekind domain, every ⊕-radical supplemented module
is a srs⊕-module. Moreover, we completely determine the structure of these modules over local Dedekind domains. |
|---|