Generalizations of ⊕ -supplemented modules
We introduce ⊕-radical supplemented modules and strongly ⊕-radical supplemented modules (briefly, srs⊕-modules) as proper generalizations of ⊕-supplemented modules. We prove that (1) a semilocal ring R is left perfect if and only if every left R-module is an ⊕-radical supplemented module; (2) a co...
Збережено в:
| Опубліковано в: : | Український математичний журнал |
|---|---|
| Дата: | 2013 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2013
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/165329 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Generalizations of ⊕ -supplemented modules / B.N. Türkmen, A. Pancar // Український математичний журнал. — 2013. — Т. 65, № 4. — С. 555-564. — Бібліогр.: 15 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-165329 |
|---|---|
| record_format |
dspace |
| spelling |
Türkmen, B.N. Pancar, A. 2020-02-13T09:14:45Z 2020-02-13T09:14:45Z 2013 Generalizations of ⊕ -supplemented modules / B.N. Türkmen, A. Pancar // Український математичний журнал. — 2013. — Т. 65, № 4. — С. 555-564. — Бібліогр.: 15 назв. — англ. 1027-3190 https://nasplib.isofts.kiev.ua/handle/123456789/165329 512.5 We introduce ⊕-radical supplemented modules and strongly ⊕-radical supplemented modules (briefly, srs⊕-modules) as proper generalizations of ⊕-supplemented modules. We prove that (1) a semilocal ring R is left perfect if and only if every left R-module is an ⊕-radical supplemented module; (2) a commutative ring R is an Artinian principal ideal ring if and only if every left R-module is a srs⊕-module; (3) over a local Dedekind domain, every ⊕-radical supplemented module is a srs⊕-module. Moreover, we completely determine the structure of these modules over local Dedekind domains. Введено поняття ⊕-радикальних доповнюваних модулiв та сильно ⊕-радикальних доповнюваних модулiв (скорочено srs⊕-модулiв) як вiдповiдних узагальнень ⊕-доповнюваних модулiв. Доведено, що: (1) напiвлокальне кiльце R є досконалим злiва тодi i тiльки тодi, коли кожен лiвий R-модуль є ⊕-радикальним доповнюваним модулем; (2) комутативне кiльце R є артiновим кiльцем головних iдеалiв тодi i тiльки тодi, коли кожен лiвий R-модуль є srs⊕-модулем; (3) над локальною дедекiндовою областю кожен ⊕-радикальний доповнюваний модуль є srs⊕-модулем. Повнiстю визначено структуру цих модулiв над локальними дедекiндовими областями. en Інститут математики НАН України Український математичний журнал Статті Generalizations of ⊕ -supplemented modules Узагальнення ⊕ -доповнюваних модулiв Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Generalizations of ⊕ -supplemented modules |
| spellingShingle |
Generalizations of ⊕ -supplemented modules Türkmen, B.N. Pancar, A. Статті |
| title_short |
Generalizations of ⊕ -supplemented modules |
| title_full |
Generalizations of ⊕ -supplemented modules |
| title_fullStr |
Generalizations of ⊕ -supplemented modules |
| title_full_unstemmed |
Generalizations of ⊕ -supplemented modules |
| title_sort |
generalizations of ⊕ -supplemented modules |
| author |
Türkmen, B.N. Pancar, A. |
| author_facet |
Türkmen, B.N. Pancar, A. |
| topic |
Статті |
| topic_facet |
Статті |
| publishDate |
2013 |
| language |
English |
| container_title |
Український математичний журнал |
| publisher |
Інститут математики НАН України |
| format |
Article |
| title_alt |
Узагальнення ⊕ -доповнюваних модулiв |
| description |
We introduce ⊕-radical supplemented modules and strongly ⊕-radical supplemented modules (briefly, srs⊕-modules) as
proper generalizations of ⊕-supplemented modules. We prove that (1) a semilocal ring R is left perfect if and only if every
left R-module is an ⊕-radical supplemented module; (2) a commutative ring R is an Artinian principal ideal ring if and
only if every left R-module is a srs⊕-module; (3) over a local Dedekind domain, every ⊕-radical supplemented module
is a srs⊕-module. Moreover, we completely determine the structure of these modules over local Dedekind domains.
Введено поняття ⊕-радикальних доповнюваних модулiв та сильно ⊕-радикальних доповнюваних модулiв (скорочено
srs⊕-модулiв) як вiдповiдних узагальнень ⊕-доповнюваних модулiв. Доведено, що: (1) напiвлокальне кiльце R є
досконалим злiва тодi i тiльки тодi, коли кожен лiвий R-модуль є ⊕-радикальним доповнюваним модулем; (2) комутативне кiльце R є артiновим кiльцем головних iдеалiв тодi i тiльки тодi, коли кожен лiвий R-модуль є srs⊕-модулем;
(3) над локальною дедекiндовою областю кожен ⊕-радикальний доповнюваний модуль є srs⊕-модулем. Повнiстю
визначено структуру цих модулiв над локальними дедекiндовими областями.
|
| issn |
1027-3190 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/165329 |
| citation_txt |
Generalizations of ⊕ -supplemented modules / B.N. Türkmen, A. Pancar // Український математичний журнал. — 2013. — Т. 65, № 4. — С. 555-564. — Бібліогр.: 15 назв. — англ. |
| work_keys_str_mv |
AT turkmenbn generalizationsofsupplementedmodules AT pancara generalizationsofsupplementedmodules AT turkmenbn uzagalʹnennâdopovnûvanihmoduliv AT pancara uzagalʹnennâdopovnûvanihmoduliv |
| first_indexed |
2025-11-28T12:20:44Z |
| last_indexed |
2025-11-28T12:20:44Z |
| _version_ |
1850853670624690176 |