Об одном методе исследования линейных функционально-дифференциальных уравнений

Розглядається скалярне лiнiйне функцiонально-диференцiальне рiвняння (ЛФДР) загаювального типу x˙(t)=ax(t−1)+bx(t/q)+f(t),q>1. При дослiдженнi ЛФДР в основному розглядаються двi початковi задачi: початкова задача з початковою функцiєю i початкова задача з початковою точкою, коли шукається класи...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Український математичний журнал
Datum:2013
Hauptverfasser: Черепенников, В.Б., Ветрова, Е.В.
Format: Artikel
Sprache:Russian
Veröffentlicht: Інститут математики НАН України 2013
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/165333
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Об одном методе исследования линейных функционально-дифференциальных уравнений / В.Б. Черепенников, Е.В. Ветрова // Український математичний журнал. — 2013. — Т. 65, № 4. — С. 594-600. — Бібліогр.: 2 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Розглядається скалярне лiнiйне функцiонально-диференцiальне рiвняння (ЛФДР) загаювального типу x˙(t)=ax(t−1)+bx(t/q)+f(t),q>1. При дослiдженнi ЛФДР в основному розглядаються двi початковi задачi: початкова задача з початковою функцiєю i початкова задача з початковою точкою, коли шукається класичний розв’язок, пiдстановка якого у вихiдне рiвняння перетворює його в тотожнiсть. У данiй роботi дослiджується початкова задача с початковою точкою з допомогою методу полiномiальних квазiрозв’язкiв. Доведено теореми iснування полiномiальних квазiрозв’язкiв i точних полiномiальних розв’язкiв розглядуваного ЛФДР. Наведено результати числового експерименту. We consider the scalar linear retarded functional differential equation x˙(t)=ax(t−1)+bx(t/q)+f(t),q>1. The study of linear retarded functional differential equations deals mainly with two initial-value problems: an initial-value problem with initial function and an initial-value problem with initial point (when one seeks a classical solution whose substitution into the original equation reduces it to an identity). In the present paper, an initial-value problem with initial point is investigated by the method of polynomial quasisolutions. We prove theorems on the existence of polynomial quasisolutions and exact polynomial solutions of the considered linear retarded functional differential equation. The results of a numerical experiment are presented
ISSN:1027-3190