Regularity of nonlinear flows on noncompact Riemannian manifolds: Differential geometry versus stochastic geometry or what kind of variations is natural?
It is shown that the geometrically correct investigation of regularity of nonlinear differential flows on manifolds and related parabolic equations requires the introduction of a new type of variations with respect to the initial data. These variations are defined via a certain generalization of a c...
Gespeichert in:
| Veröffentlicht in: | Український математичний журнал |
|---|---|
| Datum: | 2006 |
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2006
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/165379 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Regularity of nonlinear flows on noncompact Riemannian manifolds: Differential geometry versus stochastic geometry or what kind of variations is natural? / A.Val. Antoniouk, A.Vict. Antoniouk // Український математичний журнал. — 2006. — Т. 58, № 8. — С. 1011–1034. — Бібліогр.: 27 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-165379 |
|---|---|
| record_format |
dspace |
| spelling |
Antoniouk, A.Val. Antoniouk, Vict. 2020-02-13T11:16:56Z 2020-02-13T11:16:56Z 2006 Regularity of nonlinear flows on noncompact Riemannian manifolds: Differential geometry versus stochastic geometry or what kind of variations is natural? / A.Val. Antoniouk, A.Vict. Antoniouk // Український математичний журнал. — 2006. — Т. 58, № 8. — С. 1011–1034. — Бібліогр.: 27 назв. — англ. 1027-3190 https://nasplib.isofts.kiev.ua/handle/123456789/165379 It is shown that the geometrically correct investigation of regularity of nonlinear differential flows on manifolds and related parabolic equations requires the introduction of a new type of variations with respect to the initial data. These variations are defined via a certain generalization of a covariant Riemannian derivative to the case of diffeomorphisms. The appearance of curvature in the structure of high-order variational equations is discussed and a family of a priori nonlinear estimates of regularity of any order is obtained. By using the relationship between the differential equations on manifolds and semigroups, we study C∞ regular properties of solutions of the parabolic Cauchy problems with coefficients increasing at infinity. The obtained conditions of regularity generalize the classical coercivity and dissipation conditions to the case of a manifold and correlate (in a unified way) the behavior of diffusion and drift coefficients with the geometric properties of the manifold without traditional separation of curvature. Показано, що геометрично коректне дослідження регулярності нелінійних диференціальних потоків на багатовидах та асоційованих параболічних рівнянь вимагає введення нового типу варіацій за початковими умовами. Ці варіації означені за допомогою певного узагальнення коваріантної похідної Рімана на випадок дифеоморфізмів. Встановлено, яким чином кривина виникає в варіаційних рівняннях високого порядку, і одержано сім'ю апріорних нелінійних оцінок на регулярність довільного порядку. Використовуючи зв'язокміж диференціальними рівняннями на багатовидах і напівгрупами, досліджено C∞-гладкі властивості розв'язків параболічних задач Коші зі зростаючими на нескінченності коефіцієнтами. Отримані умови регулярності узагальнюють класичні умови коерцитивності та дисипативності на випадок багатовиду і пов'язують поведінку коефіцієнтів дифузії та зсуву з геометричними властивостями багатовиду, без традиційного відокремлення кривини. This research was supported by Alexander von Humboldt Foundation. en Інститут математики НАН України Український математичний журнал Статті Regularity of nonlinear flows on noncompact Riemannian manifolds: Differential geometry versus stochastic geometry or what kind of variations is natural? Регулярність нелінійних потоків на некомпактних ріманових многовидах: диференціальна геометрія проти стохастичної або які варіації є природними? Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Regularity of nonlinear flows on noncompact Riemannian manifolds: Differential geometry versus stochastic geometry or what kind of variations is natural? |
| spellingShingle |
Regularity of nonlinear flows on noncompact Riemannian manifolds: Differential geometry versus stochastic geometry or what kind of variations is natural? Antoniouk, A.Val. Antoniouk, Vict. Статті |
| title_short |
Regularity of nonlinear flows on noncompact Riemannian manifolds: Differential geometry versus stochastic geometry or what kind of variations is natural? |
| title_full |
Regularity of nonlinear flows on noncompact Riemannian manifolds: Differential geometry versus stochastic geometry or what kind of variations is natural? |
| title_fullStr |
Regularity of nonlinear flows on noncompact Riemannian manifolds: Differential geometry versus stochastic geometry or what kind of variations is natural? |
| title_full_unstemmed |
Regularity of nonlinear flows on noncompact Riemannian manifolds: Differential geometry versus stochastic geometry or what kind of variations is natural? |
| title_sort |
regularity of nonlinear flows on noncompact riemannian manifolds: differential geometry versus stochastic geometry or what kind of variations is natural? |
| author |
Antoniouk, A.Val. Antoniouk, Vict. |
| author_facet |
Antoniouk, A.Val. Antoniouk, Vict. |
| topic |
Статті |
| topic_facet |
Статті |
| publishDate |
2006 |
| language |
English |
| container_title |
Український математичний журнал |
| publisher |
Інститут математики НАН України |
| format |
Article |
| title_alt |
Регулярність нелінійних потоків на некомпактних ріманових многовидах: диференціальна геометрія проти стохастичної або які варіації є природними? |
| description |
It is shown that the geometrically correct investigation of regularity of nonlinear differential flows on manifolds and related parabolic equations requires the introduction of a new type of variations with respect to the initial data. These variations are defined via a certain generalization of a covariant Riemannian derivative to the case of diffeomorphisms. The appearance of curvature in the structure of high-order variational equations is discussed and a family of a priori nonlinear estimates of regularity of any order is obtained. By using the relationship between the differential equations on manifolds and semigroups, we study C∞ regular properties of solutions of the parabolic Cauchy problems with coefficients increasing at infinity. The obtained conditions of regularity generalize the classical coercivity and dissipation conditions to the case of a manifold and correlate (in a unified way) the behavior of diffusion and drift coefficients with the geometric properties of the manifold without traditional separation of curvature.
Показано, що геометрично коректне дослідження регулярності нелінійних диференціальних потоків на багатовидах та асоційованих параболічних рівнянь вимагає введення нового типу варіацій за початковими умовами. Ці варіації означені за допомогою певного узагальнення коваріантної похідної Рімана на випадок дифеоморфізмів. Встановлено, яким чином кривина виникає в варіаційних рівняннях високого порядку, і одержано сім'ю апріорних нелінійних оцінок на регулярність довільного порядку. Використовуючи зв'язокміж диференціальними рівняннями на багатовидах і напівгрупами, досліджено C∞-гладкі властивості розв'язків параболічних задач Коші зі зростаючими на нескінченності коефіцієнтами. Отримані умови регулярності узагальнюють класичні умови коерцитивності та дисипативності на випадок багатовиду і пов'язують поведінку коефіцієнтів дифузії та зсуву з геометричними властивостями багатовиду, без традиційного відокремлення кривини.
|
| issn |
1027-3190 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/165379 |
| citation_txt |
Regularity of nonlinear flows on noncompact Riemannian manifolds: Differential geometry versus stochastic geometry or what kind of variations is natural? / A.Val. Antoniouk, A.Vict. Antoniouk // Український математичний журнал. — 2006. — Т. 58, № 8. — С. 1011–1034. — Бібліогр.: 27 назв. — англ. |
| work_keys_str_mv |
AT antonioukaval regularityofnonlinearflowsonnoncompactriemannianmanifoldsdifferentialgeometryversusstochasticgeometryorwhatkindofvariationsisnatural AT antonioukvict regularityofnonlinearflowsonnoncompactriemannianmanifoldsdifferentialgeometryversusstochasticgeometryorwhatkindofvariationsisnatural AT antonioukaval regulârnístʹnelíníinihpotokívnanekompaktnihrímanovihmnogovidahdiferencíalʹnageometríâprotistohastičnoíaboâkívaríacííêprirodnimi AT antonioukvict regulârnístʹnelíníinihpotokívnanekompaktnihrímanovihmnogovidahdiferencíalʹnageometríâprotistohastičnoíaboâkívaríacííêprirodnimi |
| first_indexed |
2025-12-07T20:49:57Z |
| last_indexed |
2025-12-07T20:49:57Z |
| _version_ |
1850884067485024256 |