Об артиновых кольцах, удовлетворяющих условиям энгелевости

Доведено, що група R∘ тоді і тільки тоді нільпо-тентна, коли вона енгелева і фактор-кільце кільця R по його радикалу Джекобсона комутативне. Зокрема, R∘ нільпотентна, якщо вона слабко нільпотентна або n-енгелева для деякого додатного цілого числа n. Також встановлено, що кільце R строго Лі-нільпоте...

Full description

Saved in:
Bibliographic Details
Published in:Український математичний журнал
Date:2006
Main Author: Евстафьев, Р.Ю.
Format: Article
Language:Russian
Published: Інститут математики НАН України 2006
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/165432
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Об артиновых кольцах, удовлетворяющих условиям энгелевости / Р.Ю. Евстафьев // Український математичний журнал. — 2006. — Т. 58, № 9. — С. 1264–1270. — Бібліогр.: 14 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:Доведено, що група R∘ тоді і тільки тоді нільпо-тентна, коли вона енгелева і фактор-кільце кільця R по його радикалу Джекобсона комутативне. Зокрема, R∘ нільпотентна, якщо вона слабко нільпотентна або n-енгелева для деякого додатного цілого числа n. Також встановлено, що кільце R строго Лі-нільпотентне тоді і тільки тоді, коли воно енгелеве і фактор-кільце кільця R по його радикалу Джекобсона комутативне. Let R be an Artinian ring, not necessarily with a unit element, and let R∘ be the group of all invertible elements of R under the operation a∘b=a+b+ab. We prove that R∘ is a nilpotent group if and only if it is an Engel group and the ring R modulo its Jacobson radical is commutative. In particular, the group R∘ is nilpotent if it is weakly nilpotent or n-Engel for some positive integer n. We also establish that R is a strictly Lie-nilpotent ring if and only if R is an Engel ring and R modulo its Jacobson radical is commutative.
ISSN:1027-3190