О радиусе инъективности обобщенных квазиизометрий в пространстве размерности больше двух

Для деякого класу локальних гомєоморФізмів, 6ільш загальних, ніж відображення з обмеженим спотворенням, доведено одну версію теореми про універсальний радіус ін'єктивності. При фіксованому p (n−1<p≤n) встановлено, що для сім'ї всіх локальних гомеоморфізмів, які спотворюють p-модуль сіме...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Український математичний журнал
Datum:2015
Hauptverfasser: Гольберг, А.Л., Севостьянов, Е.А.
Format: Artikel
Sprache:Russian
Veröffentlicht: Інститут математики НАН України 2015
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/165442
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:О радиусе инъективности обобщенных квазиизометрий в пространстве размерности больше двух / А.Л. Гольберг, Е.А. Севостьянов // Український математичний журнал. — 2015. — Т. 67, № 2. — С. 174–184. — Бібліогр.: 25 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Для деякого класу локальних гомєоморФізмів, 6ільш загальних, ніж відображення з обмеженим спотворенням, доведено одну версію теореми про універсальний радіус ін'єктивності. При фіксованому p (n−1<p≤n) встановлено, що для сім'ї всіх локальних гомеоморфізмів, які спотворюють p-модуль сімей кривих певним чином, знайдеться куля, в якій кожне відображення сім'ї є гомеоморфізмом, як тільки фіксована функція Q, що відповідає за контроль спотворення p-модуля, задовольняє певні обмеження. При цьому одна зі згаданих умов є не лише достатньою, а й необхідною умовою наявності такого радіуса. We consider a class of local homeomorphisms much more general than the mappings with bounded distortion. Under these homeomorphisms, the growth of the p-module (n − 1 < p ≤ n) of the families of curves is controlled by an integral containing an admissible metric and a measurable function Q. It is shown that, under generic conditions imposed on the majorant Q, this class has a positive radius of injectivity (and, hence, a ball in which every mapping is homeomorphic). Moreover, one of the conditions imposed on Q is also necessary for existence of a radius of injectivity.
ISSN:1027-3190