О радиусе инъективности обобщенных квазиизометрий в пространстве размерности больше двух
Для деякого класу локальних гомєоморФізмів, 6ільш загальних, ніж відображення з обмеженим спотворенням, доведено одну версію теореми про універсальний радіус ін'єктивності. При фіксованому p (n−1<p≤n) встановлено, що для сім'ї всіх локальних гомеоморфізмів, які спотворюють p-модуль сіме...
Gespeichert in:
| Veröffentlicht in: | Український математичний журнал |
|---|---|
| Datum: | 2015 |
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | Russian |
| Veröffentlicht: |
Інститут математики НАН України
2015
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/165442 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | О радиусе инъективности обобщенных квазиизометрий в пространстве размерности больше двух / А.Л. Гольберг, Е.А. Севостьянов // Український математичний журнал. — 2015. — Т. 67, № 2. — С. 174–184. — Бібліогр.: 25 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | Для деякого класу локальних гомєоморФізмів, 6ільш загальних, ніж відображення з обмеженим спотворенням, доведено одну версію теореми про універсальний радіус ін'єктивності. При фіксованому p (n−1<p≤n) встановлено, що для сім'ї всіх локальних гомеоморфізмів, які спотворюють p-модуль сімей кривих певним чином, знайдеться куля, в якій кожне відображення сім'ї є гомеоморфізмом, як тільки фіксована функція Q, що відповідає за контроль спотворення p-модуля, задовольняє певні обмеження. При цьому одна зі згаданих умов є не лише достатньою, а й необхідною умовою наявності такого радіуса.
We consider a class of local homeomorphisms much more general than the mappings with bounded distortion. Under these
homeomorphisms, the growth of the p-module (n − 1 < p ≤ n) of the families of curves is controlled by an integral
containing an admissible metric and a measurable function Q. It is shown that, under generic conditions imposed on the
majorant Q, this class has a positive radius of injectivity (and, hence, a ball in which every mapping is homeomorphic).
Moreover, one of the conditions imposed on Q is also necessary for existence of a radius of injectivity.
|
|---|---|
| ISSN: | 1027-3190 |