Обернені задачі теорії нарізно неперервних відображень
Вивчається задача про побудову нарізно неперервної функції на добутку двох топологічних просторів, яка має задану множину точок розриву, і споріднені з нею, зокрема задача про побудову поточково збіжної послідовності неперервних функцій, яка має задані множину точок нерівномірної збіжності і множину...
Збережено в:
| Опубліковано в: : | Український математичний журнал |
|---|---|
| Дата: | 1992 |
| Автори: | , , |
| Формат: | Стаття |
| Мова: | Ukrainian |
| Опубліковано: |
Інститут математики НАН України
1992
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/165444 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Обернені задачі теорії нарізно неперервних відображень / В.К. Маслюченко, В.В Михайлюк, В.С. Собчук // Український математичний журнал. — 1992. — Т. 44, № 9. — С. 1209–1220. — Бібліогр.: 15 назв. — укр. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | Вивчається задача про побудову нарізно неперервної функції на добутку двох топологічних просторів, яка має задану множину точок розриву, і споріднені з нею, зокрема задача про побудову поточково збіжної послідовності неперервних функцій, яка має задані множину точок нерівномірної збіжності і множину точок розриву граничної функції. В метризовному випадку перша задача розв’язана для сепарабельних F,-множин, проекції яких на кожний співмножник є першої категорії. Друга ж — для пари вкладених Fσ -множин першої категорії в досконало нормальному просторі. Показано також, що для одноточкової множини в добутку тихоновських кубів, один з яких має незліченну вагу, перша задача має негативний розв’язок.
The present paper investigates the problem of constructing a separately continuous function defined on the product of two topological spaces that possesses a specified set of points of discontinuity and the related special problem of constructing a pointwise convergent sequence of continuous functions that possesses a specified set of points of nonuniform convergence and set of points of discontinuity of a limit function. In the metrizable case the former problem is solved for separable Fσ-sets whose projections onto every cofactor is of the first category. The second problem is solved for a pair of embedded Fσ.
|
|---|---|
| ISSN: | 1027-3190 |