Two-Weight Criteria for the Multidimensional Hardy-Type Operator in p-Convex Banach Function Spaces and Some Applications

The main aim of the paper is to prove a two-weight criterion for the multidimensional Hardy-type operator from weighted Lebesgue spaces into p-convex weighted Banach function spaces. The problem for the dual operator is also considered. As an application, we prove a two-weight criterion of boundedne...

Full description

Saved in:
Bibliographic Details
Published in:Український математичний журнал
Date:2015
Main Author: Bandaliev, R.A.
Format: Article
Language:English
Published: Інститут математики НАН України 2015
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/165493
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Two-Weight Criteria for the Multidimensional Hardy-Type Operator in p-Convex Banach Function Spaces and Some Applications / R.A. Bandaliev // Український математичний журнал. — 2015. — Т. 67, № 3. — С. 313–325. — Бібліогр.: 44 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-165493
record_format dspace
spelling Bandaliev, R.A.
2020-02-13T17:17:18Z
2020-02-13T17:17:18Z
2015
Two-Weight Criteria for the Multidimensional Hardy-Type Operator in p-Convex Banach Function Spaces and Some Applications / R.A. Bandaliev // Український математичний журнал. — 2015. — Т. 67, № 3. — С. 313–325. — Бібліогр.: 44 назв. — англ.
1027-3190
https://nasplib.isofts.kiev.ua/handle/123456789/165493
517.5
The main aim of the paper is to prove a two-weight criterion for the multidimensional Hardy-type operator from weighted Lebesgue spaces into p-convex weighted Banach function spaces. The problem for the dual operator is also considered. As an application, we prove a two-weight criterion of boundedness of the multidimensional geometric mean operator from weighted Lebesgue spaces into weighted Musielak–Orlicz spaces.
Головною метою даної статті є доведення двовагового критерію для багатовимiрного оператора типу Хардi із вагових лебегових просторів в p-опуклі вагові банахові простори функцій. Також розглянуто задачу для дуального оператора. Як застосування, встановлено двоваговий критерій обмеженості багатовимірного оператора геометричного середнього з вагових лебегових просторів у вагові простори Мусєляка-Орліча.
This paper was partially supported by the Science Development Foundation under the President of the Republic of Azerbaijan (Grant EIF-2014-9(15)-46/10/1) and by the grant of Presidium of Azerbaijan National Academy of Sciences 2015.
en
Інститут математики НАН України
Український математичний журнал
Статті
Two-Weight Criteria for the Multidimensional Hardy-Type Operator in p-Convex Banach Function Spaces and Some Applications
Про двоваговий критерій для багатовимірного оператора типу Харді в p-опуклих банахових просторах функцій та деякі застосування
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Two-Weight Criteria for the Multidimensional Hardy-Type Operator in p-Convex Banach Function Spaces and Some Applications
spellingShingle Two-Weight Criteria for the Multidimensional Hardy-Type Operator in p-Convex Banach Function Spaces and Some Applications
Bandaliev, R.A.
Статті
title_short Two-Weight Criteria for the Multidimensional Hardy-Type Operator in p-Convex Banach Function Spaces and Some Applications
title_full Two-Weight Criteria for the Multidimensional Hardy-Type Operator in p-Convex Banach Function Spaces and Some Applications
title_fullStr Two-Weight Criteria for the Multidimensional Hardy-Type Operator in p-Convex Banach Function Spaces and Some Applications
title_full_unstemmed Two-Weight Criteria for the Multidimensional Hardy-Type Operator in p-Convex Banach Function Spaces and Some Applications
title_sort two-weight criteria for the multidimensional hardy-type operator in p-convex banach function spaces and some applications
author Bandaliev, R.A.
author_facet Bandaliev, R.A.
topic Статті
topic_facet Статті
publishDate 2015
language English
container_title Український математичний журнал
publisher Інститут математики НАН України
format Article
title_alt Про двоваговий критерій для багатовимірного оператора типу Харді в p-опуклих банахових просторах функцій та деякі застосування
description The main aim of the paper is to prove a two-weight criterion for the multidimensional Hardy-type operator from weighted Lebesgue spaces into p-convex weighted Banach function spaces. The problem for the dual operator is also considered. As an application, we prove a two-weight criterion of boundedness of the multidimensional geometric mean operator from weighted Lebesgue spaces into weighted Musielak–Orlicz spaces. Головною метою даної статті є доведення двовагового критерію для багатовимiрного оператора типу Хардi із вагових лебегових просторів в p-опуклі вагові банахові простори функцій. Також розглянуто задачу для дуального оператора. Як застосування, встановлено двоваговий критерій обмеженості багатовимірного оператора геометричного середнього з вагових лебегових просторів у вагові простори Мусєляка-Орліча.
issn 1027-3190
url https://nasplib.isofts.kiev.ua/handle/123456789/165493
citation_txt Two-Weight Criteria for the Multidimensional Hardy-Type Operator in p-Convex Banach Function Spaces and Some Applications / R.A. Bandaliev // Український математичний журнал. — 2015. — Т. 67, № 3. — С. 313–325. — Бібліогр.: 44 назв. — англ.
work_keys_str_mv AT bandalievra twoweightcriteriaforthemultidimensionalhardytypeoperatorinpconvexbanachfunctionspacesandsomeapplications
AT bandalievra prodvovagoviikriteríidlâbagatovimírnogooperatoratipuhardívpopuklihbanahovihprostorahfunkcíitadeâkízastosuvannâ
first_indexed 2025-11-26T23:51:30Z
last_indexed 2025-11-26T23:51:30Z
_version_ 1850783962073399296
fulltext UDC 517.5 R. A. Bandaliyev (Inst. Math. and Mech. Nat. Acad. Sci. Azerbaijan, Baku) ON A TWO-WEIGHT CRITERIA FOR MULTIDIMENSIONAL HARDY TYPE OPERATOR IN p-CONVEX BANACH FUNCTION SPACES AND SOME APPLICATION* ПРО ДВОВАГОВИЙ КРИТЕРIЙ ДЛЯ БАГАТОВИМIРНОГО ОПЕРАТОРА ТИПУ ХАРДI В p-ОПУКЛИХ БАНАХОВИХ ПРОСТОРАХ ФУНКЦIЙ ТА ДЕЯКI ЗАСТОСУВАННЯ The main goal of this paper is to prove a two-weight criterion for multidimensional Hardy type operator from weighted Lebesgue spaces into p-convex weighted Banach function spaces. The problem for the dual operator is also considered. As an application, we prove a two-weight criterion for the boundedness of multidimensional geometric mean operator from weighted Lebesgue spaces into weighted Musielak – Orlicz spaces. Головною метою даної статтi є доведення двовагового критерiю для багатовимiрного оператора типу Хардi iз вагових лебегових просторiв в p-опуклi ваговi банаховi простори функцiй. Також розглянуто задачу для дуального оператора. Як застосування, встановлено двоваговий критерiй обмеженостi багатовимiрного оператора геометрич- ного середнього з вагових лебегових просторiв у ваговi простори Мусєляка – Орлiча. 1. Introduction. The investigation of Hardy operator in weighted Banach function spaces (BFS) have recently history. The goal of this investigations were closely connected with the found of criterion on the geometry and on the weights of BFS for validity of boundedness of Hardy operator in BFS. Characterization of the mapping properties such as boundedness and compactness were considered in the papers [10, 11, 14, 30] and etc. More precisely, in [10] and [11] were considered the boundedness of certain integral operator in ideal Banach spaces. In [14] was proved the boundedness of Hardy operator in Orlicz spaces. Also, in [30] the compactness and measure of noncompactness of Hardy type operator in BFS was proved. But in this paper we consider the boundedness of Hardy operator in p-convex BFS and find a new type criterion on the weights for validity of Hardy inequality. Note that the notion of BFS was introduced in [32]. In particular, the weighted Lebesgue spaces, weighted Lorentz spaces, weighted variable Lebesgue spaces, variable Lebesgue spaces with mixed norm, Musielak – Orlicz spaces and etc. is BFS. In this paper, we establish an integral-type necessary and sufficient condition on weights, which provides the boundedness of the multidimensional Hardy type operator from weighted Lebesgue spaces into p-convex weighted BFS. We also investigate the corresponding problems for the dual operator. It is well known that the classical two-weight inequality for geometric mean operator is closely connected with the one-dimensional Hardy inequality (see [20]). Analogously, the Pólya – Knopp type inequalities with multidimensional geometric mean operator are connected with the multidimensional Hardy type operator. Therefore, in this paper, as an application of Hardy inequality we prove the boundedness of multidimensional geometric mean operator and boundedness of certain sublinear operator from weighted Lebesgue spaces into weighted Musielak – Orlicz spaces. * This paper was partially supported by the Science Development Foundation under the President of the Republic of Azerbaijan (Grant EIF-2014-9(15)-46/10/1) and by the grant of Presidium of Azerbaijan National Academy of Sciences 2015. c© R. A. BANDALIYEV, 2015 ISSN 1027-3190. Укр. мат. журн., 2015, т. 67, № 3 313 314 R. A. BANDALIYEV 2. Preliminaries. Let (Ω, µ) be a complete σ-finite measure space. By L0 = L0(Ω, µ) we denote the collection of all real-valued µ-measurable functions on Ω. Definition 1 [9, 29, 32]. We say that real normed space X is a BFS if : (P1) the norm ‖f‖X is defined for every µ-measurable function f, and f ∈ X if and only if ‖f‖X <∞; ‖f‖X = 0 if and only if f = 0 a.e.; (P2) ‖f‖X = ‖|f |‖X for all f ∈ X; (P3) if 0 ≤ fn ↑ f ≤ g a.e., then ‖fn‖X ↑ ‖f‖X (Fatou property); (P4) if E is a measurable subset of Ω such that µ(E) <∞, then ‖χE‖X <∞, where χE is the characteristic function of the set E; (P5) for every measurable set E ⊂ Ω with µ(E) < ∞, there is a constant CE > 0 such that∫ E f(x) dx ≤ CE‖f‖X . Given a BFS X we can always consider its associate space X ′ consisting of those g ∈ L0 that f · g ∈ L1 for every f ∈ X with the usual order and the norm ‖g‖X′ = sup { ‖f · g‖L1 : ‖g‖X′ ≤ 1 } . Note that X ′ is a BFS in (Ω, µ) and a closed norming subspaces. Let X be a BFS and ω be a weight, that is, positive Lebesgue measurable and a.e. finite functions on Ω. Let Xω = {f ∈ L0 : fω ∈ X} . This space is a weighted BFS equipped with the norm ‖f‖Xω = ‖f ω‖X . (For more detail and proofs of results about BFS we refer the reader to [9] and [29].) Note that the notion of BFS was introduced by W. A. J. Luxemburg in [32]. Let us recall the notion of p-convexity and p-concavity of BFS’s. Definition 2 [42]. Let X is a BFS. Then X is called p-convex for 1 ≤ p ≤ ∞ if there exists a constant M > 0 such that for all f1, . . . , fn ∈ X∥∥∥∥∥∥∥ ( n∑ k=1 |fk|p )1 p ∥∥∥∥∥∥∥ X ≤M ( n∑ k=1 ‖fk‖pX )1 p if 1 ≤ p <∞, or ∥∥sup1≤k≤n |fk| ∥∥ X ≤M max1≤k≤n ‖fk‖X if p = ∞. Similarly X is called p-concave for 1 ≤ ≤ p ≤ ∞ if there exists a constant M > 0 such that for all f1, . . . , fn ∈ X( n∑ k=1 ‖fk‖pX )1 p ≤M ∥∥∥∥∥∥∥ ( n∑ k=1 |fk|p )1 p ∥∥∥∥∥∥∥ X if 1 ≤ p <∞, or max1≤k≤n ‖fk‖X ≤M ∥∥sup1≤k≤n |fk| ∥∥ X if p =∞. Remark 1. Note that the notions of p-convexity, respectively p-concavity are closely related to the notions of upper p-estimate (strong `p-composition property), respectively lower p-estimate (strong `p-decomposition property) as can be found in [29]. Now we reduce some examples of p-convex and respectively p-concave BFS. Let Rn be the n-dimensional Euclidean space of points x = (x1, . . . , xn) and Ω be a Lebesgue measurable subset in Rn and |x| = (∑n i=1 x2 i )1/2 . The Lebesgue measure of a set Ω will be denoted by |Ω|. It is well known that |B(0, 1)| = πn/2 Γ (n 2 + 1 ) , where B(0, 1) = {x : x ∈ Rn ; |x| < 1} . ISSN 1027-3190. Укр. мат. журн., 2015, т. 67, № 3 ON A TWO-WEIGHT CRITERIA FOR MULTIDIMENSIONAL HARDY TYPE OPERATOR IN P -CONVEX . . . 315 Example 1. Let 1 ≤ q ≤ ∞ and X = Lq. Then the space Lq is p-convex (p-concave) BFS if and only if 1 ≤ p ≤ q ≤ ∞ (1 ≤ q ≤ p ≤ ∞.) The proof implies from usual Minkowski inequality in Lebesgue spaces. Example 2. The following lemma shows that the variable Lebesgue spaces Lq(y)(Ω) is p- convex BFS. Lemma 1 [1]. Let 1 ≤ p ≤ q(x) ≤ q <∞ for all y ∈ Ω2 ⊂ Rm. Then the inequality∥∥‖f‖Lp(Ω1) ∥∥ Lq(·)(Ω2) ≤ Cp,q ∥∥∥‖f‖Lq(·)(Ω2) ∥∥∥ Lp(Ω1) is valid, where Cp,q = ( ‖χ∆1‖∞ + ‖χ∆2‖∞ + p ( 1 q − 1 q )) (‖χ∆1‖∞ + ‖χ∆2‖∞), q = ess inf Ω2 q(x), q = ess sup Ω2 q(x), ∆1 = {(x, y) ∈ Ω1 × Ω2 : q(y) = p} , ∆2 = Ω1 × Ω2 \∆1 and f : Ω1 × Ω2 → R is any measurable function such that ∥∥‖f‖Lp(Ω1) ∥∥ Lq(·)(Ω2) = inf µ > 0 : ∫ Ω2 (‖f(·, y)‖Lp(Ω1) µ )q(y) dy ≤ 1  <∞ and ‖f(·, y)‖Lp(Ω1) = (∫ Ω1 |f(x, y)|p dx )1/p . Analogously, if 1 ≤ q(x) ≤ p <∞, then Lq(x)(Ω) is p-concave BFS. Definition 3 [18, 37]. Let Ω ⊂ Rn be a Lebesgue measurable set. A real function ϕ : Ω × × [0,∞) 7→ [0,∞) is called a generalized ϕ-function if it satisfies: (a) ϕ(x, ·) is a ϕ-function for all x ∈ Ω, i.e., ϕ(x, ·) : [0,∞) 7→ [0,∞) is convex and satisfies ϕ(x, 0) = 0, limt→+0 ϕ(x, t) = 0; (b) ψ : x 7→ ϕ(x, t) is measurable for all t ≥ 0. If ϕ is a generalized ϕ-function on Ω, we shortly write ϕ ∈ Φ. Definition 4 [18, 37]. Let ϕ ∈ Φ and be ρϕ defined by the expression ρϕ(f) := ∫ Ω ϕ(y, |f(y)|) dy for all f ∈ L0(Ω). We put Lϕ = { f ∈ L0(Ω) : ρϕ(λ0f) <∞ for some λ0 > 0 } and ‖f‖Lϕ = inf { λ > 0 : ρϕ ( f λ ) ≤ 1 } . The space Lϕ is called Musielak – Orlicz space. Let ω be a weight function on Ω, i.e., ω is a nonnegative, almost everywhere positive function on Ω. In this work we considered the weighted Musielak – Orlicz spaces. We denote Lϕ, ω = { f ∈ L0(Ω) : fω ∈ Lϕ } . It is obvious that the norm in this spaces is given by ‖f‖Lϕ, ω = ‖fω‖Lϕ . ISSN 1027-3190. Укр. мат. журн., 2015, т. 67, № 3 316 R. A. BANDALIYEV Remark 2. Let ϕ(x, t) = tq(x) in the Definition 4, where 1 ≤ q(x) < ∞ and x ∈ Ω. Then we have the definition of variable exponent weighted Lebesgue spaces Lq(x)(Ω) (see [18]). Example 3. The following lemma shows that the Musielak – Orlicz spaces Lϕ is p-convex BFS. Lemma 2 [6]. Let Ω1 ⊂ Rn and Ω2 ⊂ Rm. Let (x, t) ∈ Ω1 × [0,∞) and ϕ ( x, t1/p ) ∈ Φ for some 1 ≤ p <∞. Suppose f : Ω1 × Ω2 7→ R. Then the inequality∥∥‖f(x, ·)‖Lp(Ω2) ∥∥ Lϕ ≤ 21/p ∥∥‖f(·, y)‖Lϕ ∥∥ Lp(Ω2) is valid. We note that the Lebesgue spaces with mixed norm, weighted Lorentz spaces and etc. is p-convex (p-concave) BFS. Now we reduce more general result connected with Minkowski’s integral inequality. Let X and Y be BFS’s on (Ω1, µ) and (Ω2, ν) respectively. By X[Y ] and Y [X] we denote the spaces with mixed norm and consisting of all functions g ∈ L0 (Ω1 × Ω2, µ× ν) such that ‖g(x, ·)‖Y ∈ X and ‖g(·, y)‖X ∈ Y. The norms in this spaces is defined as ‖g‖X[Y ] = ‖‖g(x, ·)‖Y ‖X , ‖g‖Y [X] = ‖‖g(·, y)‖X‖Y . Theorem 1 [42]. Let X and Y be BFS’s with the Fatou property. Then the generalized Minkowski integral inequality ‖f‖X[Y ] ≤M ‖f‖Y [X] holds for all measurable functions f(x, y) if and only if there exists 1 ≤ p ≤ ∞ such that X is p-convex and Y is p-concave. It is known that X[Y ] and Y [X] are BFS’s on Ω1 × Ω2 (see [29]). 3. Main results. We consider the multidimensional Hardy type operator and its dual operator Hf(x) = ∫ |y|<|x| f(y) dy and H∗f(x) = ∫ |y|>|x| f(y) dy, where f ≥ 0 and x ∈ Rn. Now we prove a two-weight criterion for multidimensional Hardy type operator acting from the p-concave weighted BFS to weighted Lebesgue spaces. Theorem 2. Let v(x) and w(x) are weights on Rn. Suppose that Xw be a p-convex weighted BFS’s for 1 ≤ p <∞ on Rn. Then the inequality ‖Hf‖Xw ≤ C ‖f‖Lp, v (1) holds for every f ≥ 0 and for all α ∈ (0, 1) if and only if A(α) = sup t>0  ∫ |y|<t [v(y)]−p ′ dy  α p′ ∥∥∥∥∥∥∥∥∥χ{|z|>t}(·)  ∫ |y|<|·| [v(y)]−p ′ dy  1−α p′ ∥∥∥∥∥∥∥∥∥ Xw <∞. (2) Moreover, if C > 0 is the best possible constant in (1), then sup 0<α<1 p′A(α) (1− α) [( p′ 1− α )p + 1 α (p− 1) ]1/p ≤ C ≤M inf 0<α<1 A(α) (1− α)1/p′ . ISSN 1027-3190. Укр. мат. журн., 2015, т. 67, № 3 ON A TWO-WEIGHT CRITERIA FOR MULTIDIMENSIONAL HARDY TYPE OPERATOR IN P -CONVEX . . . 317 Proof. Sufficiency. Passing to the polar coordinates, we have h(y) =  ∫ |z|<|y| [v(z)]−p ′ dz  α p′ =  |y|∫ 0 sn−1  ∫ |ξ|=1 [v(sξ)]−p ′ dξ  ds  α p′ , where dξ is the surface element on the unit sphere. Obviously, h(y) = h(|y|), i.e., h(y) is a radial function. Applying Hölder’s inequality for Lp(Rn) spaces and after some standard transformations, we obtain ‖Hf‖Xw = ∥∥∥∥∥∥∥w(·) ∫ |y|<|·| f(y) dy ∥∥∥∥∥∥∥ X = ∥∥∥∥∥∥∥w(·) ∫ |y|<|·| [f(y)h(y)v(y)] [h(y)v(y)]−1 dy ∥∥∥∥∥∥∥ X ≤ ≤ ∥∥∥∥w(·) ‖f h v‖Lp(|y|<|·|) ∥∥∥[h v]−1 ∥∥∥ Lp′ (|y|<|·|) ∥∥∥∥ X = = ∥∥∥∥∥ ∥∥∥∥w(·) f h v χ{|y|<|·|}(y) ∥∥∥[h v]−1 ∥∥∥ Lp′ (|y|<|·|) ∥∥∥∥ Lp ∥∥∥∥∥ X = = ∥∥∥∥w f h v χ{|·|<|x|}(·) ∥∥∥[h v]−1 ∥∥∥ Lp′ (|·|<|x|) ∥∥∥∥ X[Lp] . Applying Theorem 1, we get∥∥∥∥w f h v χ{|·|<|x|}(·) ∥∥∥[h v]−1 ∥∥∥ Lp′ (|·|<|x|) ∥∥∥∥ X[Lp] ≤ ≤M ∥∥∥∥w f h v χ{|·|<|x|}(·)∥∥∥[h v]−1 ∥∥∥ Lp′ (|·|<|x|) ∥∥∥∥ Lp[X] = = M ∥∥∥∥∥∥∥∥w(·) fh v χ{|y|<|·|}(y) ∥∥∥[h v]−1 ∥∥∥ Lp′ (|y|<|·|) ∥∥∥∥ X ∥∥∥∥ Lp = = M ∥∥∥∥fh v ∥∥∥∥w(·)χ{|y|<|·|}(y) ∥∥∥[h v]−1 ∥∥∥ Lp′ (|y|<|·|) ∥∥∥∥ X ∥∥∥∥ Lp . By switching to polar coordinates and after some calculations, we have ∥∥∥[h v]−1 ∥∥∥ Lp′ (|y|<|x|) =  ∫ |y|<|x| [h(|y|) v(y)]−p ′ dy  1/p′ = =  |x|∫ 0 rn−1 [h(r)]−p ′  ∫ |ξ|=1 [v(rξ)]−p ′ dξ  dr  1/p′ = ISSN 1027-3190. Укр. мат. журн., 2015, т. 67, № 3 318 R. A. BANDALIYEV =  |x|∫ 0  r∫ 0 sn−1  ∫ |ξ|=1 [v(sξ)]−p ′ dξ  ds  −α ∫ |ξ|=1 [v(rξ)]−p ′ dξ rn−1dr  1/p′ = = 1 (1− α)1/p′  |x|∫ 0 d dr   r∫ 0 sn−1  ∫ |ξ|=1 [v(sξ)]−p ′ dξ  ds  1−α dr  1/p′ = = 1 (1− α)1/p′  |x|∫ 0 sn−1  ∫ |ξ|=1 [v(sξ)]−p ′ dξ ds  1−α p′ = = 1 (1− α)1/p′  ∫ |z|<|x| [v(z)]−p ′ dz  1−α p′ . Therefore from condition (2), we obtain∥∥∥∥fh v ∥∥∥∥w(·)χ{|y|<|·|}(y) ∥∥∥[h v]−1 ∥∥∥ Lp′ (|y|<|·|) ∥∥∥∥ X ∥∥∥∥ Lp = = 1 (1− α)1/p′ ∥∥∥∥∥∥∥∥∥f v h ∥∥∥∥∥∥∥∥∥χ{|·|>|y|}  ∫ |z|<|·| [v(z)]−p ′ dz  1−α p′ ∥∥∥∥∥∥∥∥∥ Xw  ∥∥∥∥∥∥∥∥∥ Lp ≤ A(α) (1− α)1/p′ ‖f v‖Lp . Thus ‖Hf‖Xw ≤M A(α) (1− α)1/p′ ‖f‖Lp, v for all α ∈ (0, 1). Necessity. Let f ∈ Lp,v (Rn) , f ≥ 0, and inequality (1) is valid. We choose the test function as f(x) = p′ 1− α [g(t)] − αp′− 1 p v−p ′ (x)χ{|x|<t}(x) + [g(|x|)]− α p′− 1 p v−p ′ (x)χ{|x|>t}(x), where t > 0 is a fixed number and g(t) = ∫ |y|<t v−p ′ (y) dy = t∫ 0 sn−1  ∫ |η|=1 v−p ′ (sη) dη ds. It is obvious that dg dt = tn−1 ∫ |η|=1 v−p ′ (tη) dη. Again by switching to polar coordinates, from the right-hand side of inequality (1) we get ISSN 1027-3190. Укр. мат. журн., 2015, т. 67, № 3 ON A TWO-WEIGHT CRITERIA FOR MULTIDIMENSIONAL HARDY TYPE OPERATOR IN P -CONVEX . . . 319 ‖f‖Lp,v =  ∫ |x|<t ( p′ 1− α )p [g(t)]−α(p−1)−1 v−p ′ (x) dx+ ∫ |x|>t [g(|x|)]−α(p−1)−1 v−p ′ (x) dx  1/p = = ( p′ 1− α )p [g(t)]α(1−p) + ∞∫ t rn−1 [g(r)]−α(p−1)−1  ∫ |ξ|=1 v−p ′ (rξ) dξ dr  1/p = = ( p′ 1− α )p [g(t)]α(1−p) − 1 α(p− 1) ∞∫ t d dr [g(r)]−α(p−1) dr 1/p = = ( p′ 1− α )p [g(t)]α(1−p) + 1 α(p− 1) [g(t)]−α(p−1) −  ∫ Rn v−p ′ (y) dy −α(p−1)   1/p ≤ ≤ [( p′ 1− α )p + 1 α(p− 1) ]1/p [g(t)]−α/p ′ = [( p′ 1− α )p + 1 α(p− 1) ]1/p [h(t)]−1. After some calculations, from the left-hand side of inequality (1), we have ‖Hf‖Xw = ∥∥∥∥∥∥∥ ∫ |y|<|·| f(y) dy ∥∥∥∥∥∥∥ Xw ≥ ∥∥∥∥∥∥∥χ{|·|>t} ∫ |y|<|·| f(y) dy ∥∥∥∥∥∥∥ Xw = = ∥∥∥∥∥∥∥χ{|·|>t}  p′ 1− α ∫ |y|<t [g(t)] − αp′− 1 p v−p ′ (y) dy + ∫ t<|y|<|·| [g(|y|)]− α p′− 1 p v−p ′ (y) dy  ∥∥∥∥∥∥∥ Xw = = ∥∥∥∥∥∥∥χ{|·|>t}  p′ 1− α [g(t)] 1−α p′ + |·|∫ t rn−1 [g(r)] − αp′− 1 p  ∫ |η|=1 v−p ′ (rη) dη  dr  ∥∥∥∥∥∥∥ Xw = = ∥∥∥∥∥∥∥χ{|·|>t}  p′ 1− α [g(t)] 1−α p′ + p′ 1− α |·|∫ t d dr [g(r)] 1−α p′ dr  ∥∥∥∥∥∥∥ Xw = = ∥∥∥∥χ{|·|>t} [ p′ 1− α [g(t)] 1−α p′ + p′ 1− α ( [g(| · |)] 1−α p′ − [g(t)] 1−α p′ )]∥∥∥∥ Xw = = p′ 1− α ∥∥∥∥χ{|·|>t} [g(·)] 1−α p′ ∥∥∥∥ Xw . ISSN 1027-3190. Укр. мат. журн., 2015, т. 67, № 3 320 R. A. BANDALIYEV Hence, this implies that p′ 1− α [( p′ 1− α )p + 1 α(p− 1) ]−1/p [g(t)]α/p ′ ∥∥∥∥χ{|·|>t} [g(·)] 1−α p′ ∥∥∥∥ Xw ≤ C, i.e., p′A(α) (1− α) [( p′ 1− α )p + 1 α (p− 1) ]1/p ≤ C for all α ∈ (0, 1). Theorem 2 is proved. For the dual operator, the below stated theorem is proved analogously. Theorem 3. Let v(x) and w(x) are weights on Rn. Suppose that Xw be a p-convex weighted BFS’s for 1 ≤ p <∞ on Rn. Then the inequality ‖H∗f‖Xw ≤ C ‖f‖Lp, v (3) holds for every f ≥ 0 and for all γ ∈ (0, 1) if and only if B(γ) = sup t>0  ∫ |y|>t [v(y)]−p ′ dy  γ p′ ∥∥∥∥∥∥∥∥∥χ{|z|<t}(·)  ∫ |y|>|·| [v(y)]−p ′ dy  1−γ p′ ∥∥∥∥∥∥∥∥∥ Xw <∞. Moreover, if C > 0 is the best possible constant in (3), then sup 0<γ<1 p′B(γ) (1− γ) [( p′ 1− γ )p + 1 γ (p− 1) ]1/p ≤ C ≤M inf 0<γ<1 B(γ) (1− γ)1/p′ . Corollary 1. Note that Theorems 2 and 3 in the case Xw = Lϕ,w, ϕ ( x, t1/p ) ∈ Φ for some 1 ≤ p < ∞, x ∈ Rn was proved in [6]. In the case Xw = Lq, w, 1 < p ≤ q < ∞, for x ∈ (0,∞), α = s− 1 p− 1 and s ∈ (1, p) Theorems 2 and 3 was proved in [44]. For x ∈ Rn in the case Xw = Lq(x), w and 1 < p ≤ q(x) ≤ ess supx∈Rn q(x) < ∞ Theorems 2 and 3 was proved in [3] (see also [2]). Remark 3. In the case n = 1, Xw = Lq, w, 1 < p ≤ q ≤ ∞, at x ∈ (0,∞), for classical Lebesgue spaces the various variants of Theorems 2 and 3 were proved in [13, 20, 27, 28, 35, 36, 43] and etc. In particular, in the Lebesgue spaces with variable exponent the boundedness of Hardy type operator was proved in [16, 17, 19, 21, 26, 33, 34] and etc. For Xw = Lq(x), w, 1 < p ≤ ≤ q(x) ≤ ess supx∈[0,1] q(x) < ∞ and x ∈ [0, 1] the two-weighted criterion for one-dimensional Hardy operator was proved in [26]. Also, other type two-weighted criterion for multidimensional Hardy type operator in the case Xw = Lq(x), w, 1 < p ≤ q(x) ≤ ess supx∈Rn q(x) <∞ and x ∈ Rn was proved in [33] (see also [34]). In the papers [12] and [41] the inequalities of modular type for more general operators was proved. Also, in [14] the Hardy type inequalities with special power-type weights in Orlicz spaces was proved. ISSN 1027-3190. Укр. мат. журн., 2015, т. 67, № 3 ON A TWO-WEIGHT CRITERIA FOR MULTIDIMENSIONAL HARDY TYPE OPERATOR IN P -CONVEX . . . 321 4. Application. Now we consider the multidimensional geometric mean operator defined as Gf(x) = exp  1 |B(0, |x|)| ∫ B(0, |x|) ln f(y) dy , where f > 0 and |B(0, |x|)| = |B(0, 1)| |x|n. It is obvious that G (f1 · f2) (x) = Gf1(x) ·Gf2(x). We formulate a two-weighted criterion on boundedness of multidimensional geometric mean operator in weighted Musielak – Orlicz spaces. Theorem 4. Let ϕ ( x, t1/p ) ∈ Φ for some 0 < p <∞ and x ∈ Rn. Suppose that v(x) and w(x) are weight functions on Rn. Then the inequality ‖Gf‖Lϕ,w ≤ C ‖f‖Lp, v (4) holds for every f > 0 and for all s ∈ (1, p) if and only if D(s) =sup t>0 |B(0, t)| s−1 p ∥∥∥∥∥∥∥ χ{|z|>t}(·) |B(0, | · |)|s/p exp  1 |B(0, | · |)| ∫ B(0,|·|) ln 1 v(y) dy  ∥∥∥∥∥∥∥ Lϕ,w <∞. (5) Moreover, if C > 0 is the best possible constant in (4), then sup s>1 es/p( es + 1 s− 1 )1/p D(s) ≤ C ≤ 21/p inf s>1 e s−1 p D(s). Proof. Let α = s− 1 p− 1 , where 1 < s < p. We replace f with fβ, v with vβ, w with wβ(x) |B(0, |x|)| , 0 < β < p, and p with p β and ϕ(x, t) with ϕ ( x, t1/β ) in (1), (2), we find that for 1 < s < p β ∥∥∥∥ wβ |B(0, | · |)| H(fβ) ∥∥∥∥ L ϕ(·,t1/β) = ∥∥∥∥∥∥∥∥  1 |B(0, | · |)| ∫ B(0, |·|) fβ(y) dy  1/β ∥∥∥∥∥∥∥∥ β Lϕ,w(Rn) ≤ ≤ Cβ  ∫ Rn [f(y)v(y)]p dy β/p . Then the inequality∥∥∥∥∥∥∥∥  1 |B(0, | · |)| ∫ B(0, |·|) fβ(y) dy  1/β ∥∥∥∥∥∥∥∥ Lϕ,w(Rn) ≤ C1/β β  ∫ Rn [f(y)v(y)]p dy 1/p (6) holds if and only if ISSN 1027-3190. Укр. мат. журн., 2015, т. 67, № 3 322 R. A. BANDALIYEV A ( s− 1 p− 1 ) = = sup t>0  ∫ |y|<t [v(y)] − β p p−β dy  s−1 p ∥∥∥∥∥∥∥∥∥  χ{|z|>t}(·) |B(0, | · |)| p p−βs ∫ |y|<|·| [v(y)] − βp p−β dy  p−βs βp ∥∥∥∥∥∥∥∥∥ Lϕ,w  β = = Bβ(s, β) <∞ and sup 1<s<p/β  ( p p− sβ )p/β ( p p− sβ )p/β + 1 s− 1  β/p Bβ(s, β) ≤ Cβ ≤ 2β/p inf 1<s<p/β ( p− β p− sβ )p−β p Bβ (s, β) . (7) By the L’Hospital rule, we get lim β→+0  1 |B(0, |x|)| p p−βs ∫ |y|<|x| [v(y)] − βp p−β dy  p−βs βp = = lim β→+0 exp  p ln 1 |B(0, |x|)| + (p− βs) ln ( ∫ |y|<|x| [v(y)] − βp p−β dy ) p β  = = lim β→+0 exp −s p ln  ∫ |y|<|x| [v(y)] − βp p−β dy + + (p− βs) ( p p− β )2 ∫ |y|<|x| [v(y)] − βp p−β ln 1 v(y) dy p ∫ |y|<|x| [v(y)] − βp p−β dy  = = exp sp ln 1 |B(0, |x|)| + ∫ |y|<|x| ln 1 v(y) dy |B(0, |x|)|  = ISSN 1027-3190. Укр. мат. журн., 2015, т. 67, № 3 ON A TWO-WEIGHT CRITERIA FOR MULTIDIMENSIONAL HARDY TYPE OPERATOR IN P -CONVEX . . . 323 = 1 |B(0, |x|)|s/p exp  1 |B(0, |x|)| ∫ B(0,|x|) ln 1 v(y) dy . Therefore lim β→+0 B (s, β) = sup t>0 |B(0, t)| s−1 p ∥∥∥∥∥∥∥ χ{|z|>t}(·) |B(0, | · |)|s/p exp  1 |B(0, | · |)| ∫ B(0,|·|) ln 1 v(y) dy  ∥∥∥∥∥∥∥ Lϕ,w = = D(s) <∞ and sup s>1 es/p( es + 1 s− 1 )1/p D(s) ≤ lim β→+0 C 1/β β ≤ 21/p inf s>1 e(s−1)/pD(s). (8) Further, we have lim β→+0  1 |B(0, |x|)| ∫ B(0, |x|) fβ(y) dy  1/β = exp  1 |B(0, |x|)| ∫ B(0, |x|) ln f(y) dy  = Gf(x). From (7) it follows that limβ→+0Cβ = 1, and according to (5) and (8) limβ→+0C 1/β β = C <∞. Therefore the inequality (8) is valid. Moreover, from (6) for β → +0 we obtain that ‖Gf‖Lq(·), w(Rn) ≤ C ‖f‖Lp, v(Rn) and by (8) sup s>1 es/p( es + 1 s− 1 )1/p D(s) ≤ C ≤ 21/p inf s>1 e(s−1)/pD(s). Theorem 4 is proved. Remark 4. Let ϕ(x, t) = tq and n = 1. Note that the simplest case of the condition ϕ(y, Ct) ≤ ≤ Cq(y)ϕ(y, t) with v = w = 1 and p = q = 1 was considered in [20] and in [25]. Later this inequality was generalized in various ways by many authors in [15, 22 – 24, 31, 38 – 40, 44] and etc. Corollary 2. Let ϕ(x, t) = tq, 0 < p ≤ q <∞ and f be a positive function on Rn. Then ∫ Rn [Gf(x)]q |x|δ q dx 1/q ≤ C  ∫ Rn fp(x) |x|µ p dx 1/p (9) holds with a finite constant C if and only if δ + n q = µ n + n p ISSN 1027-3190. Укр. мат. журн., 2015, т. 67, № 3 324 R. A. BANDALIYEV and the best constant C has the following condition: q √ p nq eµ/n 2 |B(0, 1)|1/q−1/p sup s>1 es/p (s− 1)1/p−1/q [(s− 1)es + 1]1/p ≤ C ≤ |B(0, 1)|1/q−1/p eµ/n 2+1/q q √ n . Remark 5. Let ϕ(x, t) = tq and q = p. Then inequality (9) is sharp with the constant C = eµ/n 2+1/p p √ n . 1. Bandaliev R. A. On an inequality in Lebesgue space with mixed norm and with variable summability exponent // Math. Notes. – 2008. – 84, № 3. – P. 303 – 313. 2. Bandaliev R. A. The boundedness of certain sublinear operator in the weighted variable Lebesgue spaces // Czech. Math. J. – 2010. – 60, № 2. – P. 327 – 337 (corrections in Czech. Math. J. – 2013. – 63, № 4. – P. 1149 – 1152). 3. Bandaliev R. A. The boundedness of multidimensional Hardy operator in the weighted variable Lebesgue spaces // Lith. Math. J. – 2010. – 50, № 3. – P. 249 – 259. 4. Bandaliev R. A. Embedding between variable Lebesgue spaces with measures // Azerb. J. Math. – 2012. – 1. – P. 119 – 126. 5. Bandaliev R. A. Application of multidimensional Hardy operator ant its connection with a certain nonlinear differential equation in weighted variable Lebesgue spaces // Ann. Funct. Anal. – 2013. – 4, № 2. – P. 118 – 130. 6. Bandaliev R. A. Criteria of two-weighted inequalities for multidimensional Hardy type operator in weighted Musielak – Orlicz spaces and some application // Math. and Stat. – 2013. – 1, № 3. – P. 144 – 156. 7. Bandaliev R. A. On Hardy-type inequalities in weighted variable Lebesgue space Lp(x),ω for 0 < p(x) < 1 // Eurasian Math. J. – 2013. – 4, № 4. – P. 5 – 16. 8. Bandaliev R. A. On structural properties of weighted variable Lebesgue space Lp(x),ω for 0 < p(x) < 1 // Math. Notes. – 2014. – 95, № 4. – P. 492 – 506. 9. Bennett C., Sharpley R. Interpolation of operators // Pure and Appl. Math. – 1988. – 129. 10. Berezhnoi E. I. Sharp estimates of operators on the cones of ideal spaces // Trudy Mat. Inst. Steklov. – 1993. – 204. – P. 3 – 36 (English transl.: Proc. Steklov Inst. Math. – 1994. – 204, № 3). 11. Berezhnoi E. I. Two-weighted estimations for the Hardy – Littlewood maximal function in ideal Banach spaces // Proc. Amer. Math. Soc. – 1999. – 127. – P. 79 – 87. 12. Bloom S., Kerman R. Weighted LΦ integral inequalities for operators of Hardy type // Stud. Math. – 1994. – 110, № 1. – P. 35 – 52. 13. Bradley J. Hardy inequalities with mixed norms // Can. Math. Bull. – 1978. – 21. – P. 405 – 408. 14. Cianchi A. Hardy inequalities in Orlicz spaces // Trans. Amer. Math. Soc. – 1999. – 351. – P. 2459 – 2478. 15. Cochran J. A., Lee C.-S. Inequalities related to Hardy’s and Heinig’s // Math. Proc. Cambridge Phil. Soc. – 1984. – 96. – P. 1 – 7. 16. Cruz-Uribe D., Fiorenza A., Neugebauer C. J. The maximal function on variable Lp spaces // Ann. Acad. Sci. Fenn. Math. – 2003. – 28, № 1. – P. 223 – 238 (corrections in Ann. Acad. Sci. Fenn. Math. – 2004. – 29, № 2. – P. 247 – 249). 17. Diening L., Samko S. Hardy inequality in variable exponent Lebesgue spaces // Frac. Calc. Appl. Anal. – 2007. – 10, № 1. – P. 1 – 18. 18. Diening L., Harjulehto P., Hästö P., Ru̇žička M. Lebesgue and Sobolev spaces with variable exponents // Springer Lect. Notes. – 2011. – 2017. 19. Edmunds D. E., Kokilashvili V., Meskhi A. On the boundedness and compactness of weighted Hardy operators in spaces Lp(x) // Georg. Math. J. – 2005. – 12, № 1. – P. 27 – 44. 20. Hardy G. H., Littlewood J. E., Pólya G. Inequalities. – Cambridge Univ. Press, 1988. 21. Harjulehto P., Hästö P., Koskenoja M. Hardy’s inequality in a variable exponent Sobolev space // Georg. Math. J. – 2005. – 12, № 1. – P. 431 – 442. 22. Heinig H. P. Some extensions of inequalities // SIAM J. Math. Anal. – 1975. – 6. – P. 698 – 713. 23. Jain P., Persson L. E., Wedestig A. From Hardy to Carleman and general mean-type inequalities // Funct. Spaces and Appl. – New York: CRC Press, 2000. – P. 117 – 130. ISSN 1027-3190. Укр. мат. журн., 2015, т. 67, № 3 ON A TWO-WEIGHT CRITERIA FOR MULTIDIMENSIONAL HARDY TYPE OPERATOR IN P -CONVEX . . . 325 24. Jain P., Persson L. E., Wedestig A. Carleman – Knopp type inequalities via Hardy’s inequality // Math. Inequal. and Appl. – 2001. – 4, № 3. – P. 343 – 355. 25. Knopp K. Über Reihen mit positiven Gliedern // J. London Math. Soc. – 1928. – 3. – P. 205 – 211. 26. Kopaliani T. S. On some structural properties of Banach function spaces and bounded-ness of certain integral operators // Czechoslovak Math. J. – 2004. – (54)129. – P. 791 – 805. 27. Krbec M., Opic B., Pick L., Rákosnı́k J. Some recent results on Hardy type operators in weighted function spaces and related topics // Funct. Spaces, Different. Operators and Nonlinear Anal. – Stuttgart: Teubner, 1993. – P. 158 – 184. 28. Kufner A., Persson L. E. Integral inequalities with weights. – Singapore: World Sci. Publ., 2002. 29. Lindenstrauss J., Tzafriri L. Classical Banach spaces II // Ergeb. Math. und Grenzgeb. – 1979. – 97. 30. Lomakina E., Stepanov V. On the Hardy-type integral operator in Banach function spaces // Publ. Mat. – 1998. – 42. – P. 165 – 194. 31. Love E. R. Inequalities related to those of Hardy and of Cochran and Lee // Math. Proc. Cambridge Phil. Soc. – 1986. – 99. – P. 395 – 408. 32. Luxemburg W. A. J. Banach function spaces: Thesis. – Delfi, 1955. 33. Mamedov F. I., Harman A. On a weighted inequality of Hardy type in spaces Lp(·) // J. Math. Anal. and Appl. – 2009. – 353, № 2. – P. 521 – 530. 34. Mashiyev R. A., Çekiç B., Mamedov F. I., Ogras S. Hardy’s inequality in power-type weighted Lp(·)(0,∞) spaces // J. Math. Anal. and Appl. – 2007. – 334, № 1. – P. 289 – 298. 35. Maz’ya V. G. Sobolev spaces. – Berlin: Springer-Verlag, 1985. 36. Muckenhoupt B. Hardy’s inequality with weights // Stud. Math. – 1972. – 44. – P. 31 – 38. 37. Musielak J. Orlicz spaces and modular spaces // Lect. Notes Math. – Berlin etc.: Springer-Verlag, 1983. – 1034. 38. Opic B., Gurka P. Weighted inequalities for geometric means // Proc. Amer. Math. Soc. – 1994. – 120, № 3. – P. 771 – 779. 39. Persson L.-E., Stepanov V. D. Weighted integral inequalities with the geometric mean operator // J. Inequal. and Appl. – 2002. – 7, № 5. – P. 727 – 746. 40. Pick L., Opic B. On geometric mean operator // J. Math. Anal. and Appl. – 1994. – 183, № 3. – P. 652 – 662. 41. Quinsheng L. Two weight Φ-inequalities for the Hardy operator, Hardy – Littlewood maximal operator and fractional integrals // Proc. Amer. Math. Soc. – 1993. – 118, № 1. – P. 129 – 142. 42. Schep A. Minkowski’s integral inequality for function norms // Oper. Theory: Adv. and Appl. – 1995. – 75. – P. 299 – 308 (corrections in Oper. Theory: Adv. and Appl. – 2014. – P. 1 – 11). 43. Tomaselli G. A class of inequalities // Boll. Unione mat. ital. – 1969. – 2. – P. 622 – 631. 44. Wedestig A. Some new Hardy type inequalities and their limiting inequalities // J. Inequal. in Pure and Appl. Math. – 2003. – 61, № 4. – P. 1 – 33. Received 08.12.13, after revision — 18.11.14 ISSN 1027-3190. Укр. мат. журн., 2015, т. 67, № 3