Необходимые и достаточные условия существования взвешенного сингулярного разложения матриц с вырожденными весами

Одержано зважене сингулярне розвинення матриць з виродженими вагами при використанні ортогональних матриць. Визначено необхідні та достатні умови, при яких існує побудоване зважене сингулярне розвинення матриць. На основі цього сингулярного розвинення матриць отримано розвинення зважених псевдооберн...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Український математичний журнал
Datum:2015
Hauptverfasser: Сергиенко, И.В., Галба, Е.Ф., Дейнека, В.С.
Format: Artikel
Sprache:Russian
Veröffentlicht: Інститут математики НАН України 2015
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/165502
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Необходимые и достаточные условия существования взвешенного сингулярного разложения матриц с вырожденными весами / И.В. Сергиенко, Е.Ф. Галба, В.С. Дейнека // Український математичний журнал. — 2015. — Т. 67, № 3. — С. 406–426. — Бібліогр.: 29 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Одержано зважене сингулярне розвинення матриць з виродженими вагами при використанні ортогональних матриць. Визначено необхідні та достатні умови, при яких існує побудоване зважене сингулярне розвинення матриць. На основі цього сингулярного розвинення матриць отримано розвинення зважених псевдообернених до них матриць з виродженими вагами та розвинення цих матриць в матричні степеневі ряди і добутки. Визначено застосування цих розвинень. A weighted singular-valued decomposition of matrices with singular weights is obtained by using orthogonal matrices. The necessary and sufficient conditions for the existence of the constructed weighted singular-valued decomposition are established. The indicated singular-valued decomposition of matrices is used to obtain a decomposition of their weighted pseudoinverse matrices and decompose them into matrix power series and products. The applications of these decompositions are discussed.
ISSN:1027-3190