Задача спряження розв'язків хвильового рівняння Ламе в областях з кусково-гладкими межами

Вивчається задача спряження розв'язків хвильового рівняння Ламе в областях, що містять особливі лінії (множини кутових точок) і конічні точки. Показано, що розв'язки хвильового рівняння Ламе поблизу негладкостей межових поверхонь набувають особливостей степеневого характеру, і знайдено їх...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Український математичний журнал
Datum:2005
1. Verfasser: Денисюк, І.Т.
Format: Artikel
Sprache:Ukrainian
Veröffentlicht: Інститут математики НАН України 2005
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/165555
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Задача спряження розв'язків хвильового рівняння Ламе в областях з кусково-гладкими межами / І.Т. Денисюк // Український математичний журнал. — 2005. — Т. 57, № 1. — С. 32–46. — Бібліогр.: 23 назв. — укр.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Вивчається задача спряження розв'язків хвильового рівняння Ламе в областях, що містять особливі лінії (множини кутових точок) і конічні точки. Показано, що розв'язки хвильового рівняння Ламе поблизу негладкостей межових поверхонь набувають особливостей степеневого характеру, і знайдено їх асимптотику. Враховуючи її та застосовуючи введені до розгляду пружні загаювальні потенціали простого і подвійного шару та об'єму, задачу зведено до системи функціональних рівнянь і сформульовано умови її розв'язності. We study the problem of conjugation of solutions of the Lame wave equation in domains containing singular lines (sets of angular points) and conic points. We show that solutions of the Lame wave equation have power-type singularities near nonsmoothnesses of boundary surfaces and determine their asymptotics. Taking these asymptotics into account and using the introduced simple-layer, double-layer, and volume elastic retarded potentials, we reduce the problem to a system of functional equations and formulate conditions for its solvability.
ISSN:1027-3190