Hereditary Properties between a Ring and its Maximal Subrings

We study the existence of maximal subrings and hereditary properties between a ring and its maximal subrings. Some new techniques for establishing the existence of maximal subrings are presented. It is shown that if R is an integral domain and S is a maximal subring of R, then the relation dim(R) = ...

Full description

Saved in:
Bibliographic Details
Published in:Український математичний журнал
Date:2013
Main Authors: Azarang, A., Karamzadeh, O.A.S., Namazi, A.
Format: Article
Language:English
Published: Інститут математики НАН України 2013
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/165581
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Hereditary Properties between a Ring and its Maximal Subrings / A. Azarang, O.A.S. Karamzadeh, A. Namazi // Український математичний журнал. — 2013. — Т. 65, № 7. — С. 883–893. — Бібліогр.: 12 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-165581
record_format dspace
spelling Azarang, A.
Karamzadeh, O.A.S.
Namazi, A.
2020-02-14T09:47:18Z
2020-02-14T09:47:18Z
2013
Hereditary Properties between a Ring and its Maximal Subrings / A. Azarang, O.A.S. Karamzadeh, A. Namazi // Український математичний журнал. — 2013. — Т. 65, № 7. — С. 883–893. — Бібліогр.: 12 назв. — англ.
1027-3190
https://nasplib.isofts.kiev.ua/handle/123456789/165581
512.5
We study the existence of maximal subrings and hereditary properties between a ring and its maximal subrings. Some new techniques for establishing the existence of maximal subrings are presented. It is shown that if R is an integral domain and S is a maximal subring of R, then the relation dim(R) = 1 implies that dim(S) = 1 and vice versa if and only if (S : R) = 0. Thus, it is shown that if S is a maximal subring of a Dedekind domain R integrally closed in R; then S is a Dedekind domain if and only if S is Noetherian and (S : R) = 0. We also give some properties of maximal subrings of one-dimensional valuation domains and zero-dimensional rings. Some other hereditary properties, such as semiprimarity, semisimplicity, and regularity are also studied.
Вивчається існування максимальних підкілєць та спадкові властивості між кільцєм та його максимальними підкільцями. Наведено деякі нові методи встановлення існування максимальних підкілець. Показано, що якщо R — інтегральна область, а S — її максимальне підкільце, то із співвідношення dim(R)=1 випливає, що dim(S)=1, і навпаки тоді i тільки тоді, коли (S:R)=0. Як наслідок показано, що, якщо S є максимальним підкільцем дедекіндової області R, яка є інтегрально замкненою в R, то S є дедекіндовим підкільцем тоді i тільки тоді, коли S є нетеровим та (S:R)=0. Наведено також деякі властивості максимальних підкілець одновимірних областей нормування та нульвимірних кілець. Також вивчено деякі інші спадкові властивості, такі як напівпримарність, напівпростота та регулярність.
en
Інститут математики НАН України
Український математичний журнал
Статті
Hereditary Properties between a Ring and its Maximal Subrings
Спадкові властивоcті мiж кільцем та його максимальними підкільцями
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Hereditary Properties between a Ring and its Maximal Subrings
spellingShingle Hereditary Properties between a Ring and its Maximal Subrings
Azarang, A.
Karamzadeh, O.A.S.
Namazi, A.
Статті
title_short Hereditary Properties between a Ring and its Maximal Subrings
title_full Hereditary Properties between a Ring and its Maximal Subrings
title_fullStr Hereditary Properties between a Ring and its Maximal Subrings
title_full_unstemmed Hereditary Properties between a Ring and its Maximal Subrings
title_sort hereditary properties between a ring and its maximal subrings
author Azarang, A.
Karamzadeh, O.A.S.
Namazi, A.
author_facet Azarang, A.
Karamzadeh, O.A.S.
Namazi, A.
topic Статті
topic_facet Статті
publishDate 2013
language English
container_title Український математичний журнал
publisher Інститут математики НАН України
format Article
title_alt Спадкові властивоcті мiж кільцем та його максимальними підкільцями
description We study the existence of maximal subrings and hereditary properties between a ring and its maximal subrings. Some new techniques for establishing the existence of maximal subrings are presented. It is shown that if R is an integral domain and S is a maximal subring of R, then the relation dim(R) = 1 implies that dim(S) = 1 and vice versa if and only if (S : R) = 0. Thus, it is shown that if S is a maximal subring of a Dedekind domain R integrally closed in R; then S is a Dedekind domain if and only if S is Noetherian and (S : R) = 0. We also give some properties of maximal subrings of one-dimensional valuation domains and zero-dimensional rings. Some other hereditary properties, such as semiprimarity, semisimplicity, and regularity are also studied. Вивчається існування максимальних підкілєць та спадкові властивості між кільцєм та його максимальними підкільцями. Наведено деякі нові методи встановлення існування максимальних підкілець. Показано, що якщо R — інтегральна область, а S — її максимальне підкільце, то із співвідношення dim(R)=1 випливає, що dim(S)=1, і навпаки тоді i тільки тоді, коли (S:R)=0. Як наслідок показано, що, якщо S є максимальним підкільцем дедекіндової області R, яка є інтегрально замкненою в R, то S є дедекіндовим підкільцем тоді i тільки тоді, коли S є нетеровим та (S:R)=0. Наведено також деякі властивості максимальних підкілець одновимірних областей нормування та нульвимірних кілець. Також вивчено деякі інші спадкові властивості, такі як напівпримарність, напівпростота та регулярність.
issn 1027-3190
url https://nasplib.isofts.kiev.ua/handle/123456789/165581
citation_txt Hereditary Properties between a Ring and its Maximal Subrings / A. Azarang, O.A.S. Karamzadeh, A. Namazi // Український математичний журнал. — 2013. — Т. 65, № 7. — С. 883–893. — Бібліогр.: 12 назв. — англ.
work_keys_str_mv AT azaranga hereditarypropertiesbetweenaringanditsmaximalsubrings
AT karamzadehoas hereditarypropertiesbetweenaringanditsmaximalsubrings
AT namazia hereditarypropertiesbetweenaringanditsmaximalsubrings
AT azaranga spadkovívlastivoctímižkílʹcemtaiogomaksimalʹnimipídkílʹcâmi
AT karamzadehoas spadkovívlastivoctímižkílʹcemtaiogomaksimalʹnimipídkílʹcâmi
AT namazia spadkovívlastivoctímižkílʹcemtaiogomaksimalʹnimipídkílʹcâmi
first_indexed 2025-12-07T20:33:19Z
last_indexed 2025-12-07T20:33:19Z
_version_ 1850883020809043968