Дифференциальный аналог основной леммы теории марковских ветвящихся процессов и его применения
Отримано диференціальний аналог основної леми теорії марковських гіллястих процесів μ(t),t≥0, неперервного часу. Показано можливість застосування отриманих результатів при доведенні граничних теорем теорії гіллястих процесів відомим методом Стейна - Тихомирова. Крім цього, на відміну від класичної у...
Gespeichert in:
| Veröffentlicht in: | Український математичний журнал |
|---|---|
| Datum: | 2005 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | Russian |
| Veröffentlicht: |
Інститут математики НАН України
2005
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/165620 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Дифференциальный аналог основной леммы теории марковских ветвящихся процессов и его применения / А.А. Имомов // Український математичний журнал. — 2005. — Т. 57, № 2. — С. 258–264. — Бібліогр.: 4 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | Отримано диференціальний аналог основної леми теорії марковських гіллястих процесів μ(t),t≥0, неперервного часу. Показано можливість застосування отриманих результатів при доведенні граничних теорем теорії гіллястих процесів відомим методом Стейна - Тихомирова. Крім цього, на відміну від класичної умови невиродження гіллястого процесу {μ(t)>0} розглянуто і обґрунтовано мовою твірних функцій умову невиродження процесу в далекому майбутньому {μ(∞)>0}. За цієї умови вивчено асимптотичну поведінку траєкторії розглядуваного процесу.
We obtain a differential analog of the main lemma in the theory of Markov branding processes μ(t), t≥0, of continuous time. We show that the results obtained can be applied in the proofs of limit theorems in the theory of branching processes by the well-known Stein - Tikhomirov method. In contrast to the classical condition of nondegeneracy of the branching process {μ(t)>0}, we consider the condition of nondegeneracy of the process in distant {μ(∞)>0} and justify in terms of generating functions. Under this condition, we study the asymptotic behavior of trajectory of the considered process.
|
|---|---|
| ISSN: | 1027-3190 |