Genera of the Torsion-Free Polyhedra
We study the genera of polyhedra (finite cell complexes), i.e., the classes of polyhedra such that all their localizations are stably homotopically equivalent. More precisely, we describe the genera of the torsion-free polyhedra of dimensions not greater than 11. In particular, we find the number of...
Saved in:
| Published in: | Український математичний журнал |
|---|---|
| Date: | 2013 |
| Main Author: | Kolesnyk, P.O. |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2013
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/165653 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Genera of the Torsion-Free Polyhedra / P.O. Kolesnyk // Український математичний журнал. — 2013. — Т. 65, № 10. — С. 1332–1341. — Бібліогр.: 14 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Genera of the Torsion Free Polyhedra
by: P. O. Kolesnyk
Published: (2013) -
On the cotypeset of torsion-free abelian groups
by: Karimi, Fatemeh
Published: (2015) -
On the cotypeset of torsion-free abelian groups
by: F. Karimi
Published: (2015) -
On the cotypeset of torsion-free abelian groups
by: Karimi, F.
Published: (2015) -
Multistage approach to solving the optimization packing problem for concave polyhedra
by: Yu. H. Stoian, et al.
Published: (2020)