Local Maxima of the Potential Energy on Spheres

Збережено в:
Бібліографічні деталі
Опубліковано в: :Український математичний журнал
Дата:2013
Автор: Radchenko, D.V.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2013
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/165661
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Local Maxima of the Potential Energy on Spheres / D.V. Radchenko // Український математичний журнал. — 2013. — Т. 65, № 10. — С. 1427–1429. — Бібліогр.: 3 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-165661
record_format dspace
spelling Radchenko, D.V.
2020-02-15T07:52:39Z
2020-02-15T07:52:39Z
2013
Local Maxima of the Potential Energy on Spheres / D.V. Radchenko // Український математичний журнал. — 2013. — Т. 65, № 10. — С. 1427–1429. — Бібліогр.: 3 назв. — англ.
1027-3190
https://nasplib.isofts.kiev.ua/handle/123456789/165661
517.5
en
Інститут математики НАН України
Український математичний журнал
Короткі повідомлення
Local Maxima of the Potential Energy on Spheres
Локальні максимуми потенціальної енергії на сферах
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Local Maxima of the Potential Energy on Spheres
spellingShingle Local Maxima of the Potential Energy on Spheres
Radchenko, D.V.
Короткі повідомлення
title_short Local Maxima of the Potential Energy on Spheres
title_full Local Maxima of the Potential Energy on Spheres
title_fullStr Local Maxima of the Potential Energy on Spheres
title_full_unstemmed Local Maxima of the Potential Energy on Spheres
title_sort local maxima of the potential energy on spheres
author Radchenko, D.V.
author_facet Radchenko, D.V.
topic Короткі повідомлення
topic_facet Короткі повідомлення
publishDate 2013
language English
container_title Український математичний журнал
publisher Інститут математики НАН України
format Article
title_alt Локальні максимуми потенціальної енергії на сферах
issn 1027-3190
url https://nasplib.isofts.kiev.ua/handle/123456789/165661
citation_txt Local Maxima of the Potential Energy on Spheres / D.V. Radchenko // Український математичний журнал. — 2013. — Т. 65, № 10. — С. 1427–1429. — Бібліогр.: 3 назв. — англ.
work_keys_str_mv AT radchenkodv localmaximaofthepotentialenergyonspheres
AT radchenkodv lokalʹnímaksimumipotencíalʹnoíenergíínasferah
first_indexed 2025-11-26T08:36:02Z
last_indexed 2025-11-26T08:36:02Z
_version_ 1850618657514717184
fulltext UDC 517.5 D. V. Radchenko (Kyiv Nat. Taras Shevchenko Univ.) LOCAL MAXIMA OF THE POTENTIAL ENERGY ON SPHERES ЛОКАЛЬНI МАКСИМУМИ ПОТЕНЦIАЛЬНОЇ ЕНЕРГIЇ НА СФЕРАХ Let Sd be a unit sphere in Rd+1, and let α be a positive real number. For pairwise different points x1, x2, . . . , xN ∈ Sd, we consider a functional Eα(x1, x2, . . . , xN ) = ∑ i 6=j ‖xi − xj‖−α. The following theorem is proved: for α ≥ d − 2, the functional Eα(x1, x2, . . . , xN ) does not have local maxima. Нехай Sd — одинична сфера в Rd+1, а α — додатне число. Для попарно рiзних точок x1, x2, . . . , xN ∈ Sd розглядається функцiонал Eα(x1, x2, . . . , xN ) = ∑ i 6=j ‖xi − xj‖−α. Доведено, що при α ≥ d − 2 функцiонал Eα(x1, x2, . . . , xN ) не має локальних максимумiв. 1. Introduction. In this short note we will prove that certain potential energy functionals on sphere attain no local maxima. This partially answers the question that Professor Edward Saff asked on the conference “Optimal Configurations on the Sphere and Other Manifolds” at Vanderbilt University in 2010. For d ∈ N, denote by Sd a unit sphere in Rd+1. For α > 0 and any configuration of N ≥ 2 distinct points x1, x2, . . . , xN ∈ Sd consider the following energy functional: Eα(x1, x2, . . . , xN ) = ∑ i 6=j 1 ‖xi − xj‖α , where ‖ · ‖ is the Euclidean norm on Rd+1. For d = 2, α = 1 this functional has a physical interpretation as the electrostatic potential energy of a system containing N equally charged particles on the sphere. The problem of finding configurations which minimize these functionals is closely related to the problem of finding uniformly distributed collections of points on sphere, in particular, of spherical designs (see [3, 1]), as well as to the problem of finding optimal spherical codes (see [2]). It is clear that for each d ∈ N, N ≥ 2, and α > 0 there exists a configuration of N points on sphere Sd at which Eα has a local (and even global) minimum. In his closing speech at the conference “Optimal Configurations on the Sphere and Other Manifolds” Professor Saff asked whether Eα can have local maxima. We prove the following theorem, which says that for sufficiently large α this is impossible. Theorem 1. For positive α ≥ d− 2 the functional Eα(x1, x2, . . . , xN ) has no local maxima. 2. Proof of Theorem 1. For convenience, we rescale the energy by a factor of 2α/2. Let r = α/2 and denote gr(t) = (1− t)−r. Then 2r ‖xi − xj‖α = gr(〈xi, xj〉), where 〈·, ·〉 is the usual inner product on Rd+1. Therefore, the energy functional can be written as c© D. V. RADCHENKO, 2013 ISSN 1027-3190. Укр. мат. журн., 2013, т. 65, № 10 1427 1428 D. V. RADCHENKO Eα(x1, . . . , xN ) = ∑ i 6=j gr(〈xi, xj〉). Introduce arbitrary vectors h1, h2, . . . , hN orthogonal to corresponding xi, (i.e. 〈xi, hi〉 = 0) and consider the function f : R→ R defined by f(t) = Eα ( x1 + th1 ‖x1 + th1‖ , . . . , xN + thN ‖xN + thN‖ ) . If Eα attains a local maximum at x1, . . . , xN , then we must have f ′(0) = 0 and f ′′(0) ≤ 0. The expression for second derivative is f ′′(0) = ∑ i 6=j [ g′′r (〈xi, xj〉)(〈xi, hj〉+ 〈xj , hi〉)2+ + g′r(〈xi, xj〉) ( 2〈hi, hj〉 − (‖hi‖2 + ‖hj‖2)〈xi, xj〉 )] . (1) Therefore, in order to prove that our energy has no local maxima it is sufficient to find hi such that (1) is strictly positive. To do so, take h2 = h3 = . . . = hN = 0 and h1 = h, where ‖h‖ = 1. Then f ′′(0)/2 is equal to N∑ j=2 [ g′′r (〈x1, xj〉)〈xj , h〉2 − g′r(〈x1, xj〉)〈x1, xj〉 ] . (2) Suppose that (2) is nonpositive for all h orthogonal to x1. Then the average value of (2) over all such h is also nonpositive. More specifically, let H = {h ∈ Sd : 〈x1, h〉 = 0}, then H is a (d − 1)-dimensional sphere, and we take µd−1 to be the normalized Lebesgue measure on H. We have ∫ H 〈xj , h〉2dµd−1(h) = ∫ H 〈xj − x1〈x1, xj〉, h〉2dµd−1(h) = 1− 〈xj , x1〉2 d , because x′j = xj − x1〈x1, xj〉 is orthogonal to x1 and ‖x′j‖2 = 1− 〈xj , x1〉2. Therefore, integrating (2) over H with respect to µd−1(h) gives us N∑ j=2 ( g′′r (〈x1, xj〉) 1− 〈x1, xj〉2 d − g′r(〈x1, xj〉)〈x1, xj〉 ) ≤ 0. (3) After substituting gr(t) = (1− t)−r into (3) we get N∑ j=2 ( r(r + 1)(1 + 〈x1, xj〉) d(1− 〈x1, xj〉)r+1 − r〈x1, xj〉 (1− 〈x1, xj〉)r+1 ) ≤ 0, or, equivalently, N∑ j=2 r (r + 1) + (r + 1− d)〈x1, xj〉 d(1− 〈x1, xj〉)r+1 ≤ 0. (4) Since α ≥ d− 2, we have |r+1− d| ≤ r+1 and hence every term on the left of (4) is nonnegative. ISSN 1027-3190. Укр. мат. журн., 2013, т. 65, № 10 LOCAL MAXIMA OF THE POTENTIAL ENERGY ON SPHERES 1429 In fact, we have 〈x1, xj〉 < 1, so every term is strictly positive, and therefore the sum on the left of (4) must be strictly positive. This contradiction concludes the proof. 1. Bondarenko A., Viazovska M. Spherical designs via Brouwer fixed point theorem // SIAM J. Discrete Math. – 2010. – 24. – P. 207 – 217. 2. Cohn H., Kumar A. Universally optimal distribution of points on spheres // J. Amer. Math. Soc. – 2006. – 20, № 1. – P. 99 – 148. 3. Saff E. B., Kuijlaars A. B. J. Distributing many points on a sphere // Math. Intelligencer. – 1997. – 19, № 1. – P. 5 – 11. Received 16.10.12 ISSN 1027-3190. Укр. мат. журн., 2013, т. 65, № 10