Класифікація скінченних комутативних напівгруп, для яких інверсний моноїд локальних автоморфізмів є Δ-напівгрупою

Полугруппа S называется ∆-полугруппой, если решетка ее конгруэнций образует цепь относительно включения. Локальным автоморфизмом полугруппы S называют изоморфизм между двумя ее подполугруппами. Множество всех локальных автоморфизмов полугруппы S относительно обычной операции композиции бинарных отно...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Український математичний журнал
Datum:2015
1. Verfasser: Дереч, В.Д.
Format: Artikel
Sprache:Ukrainian
Veröffentlicht: Інститут математики НАН України 2015
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/165679
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Класифікація скінченних комутативних напівгруп, для яких інверсний моноїд локальних автоморфізмів є Δ-напівгрупою / В.Д. Дереч // Український математичний журнал. — 2015. — Т. 67, № 7. — С. 867–873. — Бібліогр.: 27 назв. — укр.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Полугруппа S называется ∆-полугруппой, если решетка ее конгруэнций образует цепь относительно включения. Локальным автоморфизмом полугруппы S называют изоморфизм между двумя ее подполугруппами. Множество всех локальных автоморфизмов полугруппы S относительно обычной операции композиции бинарных отношений образует инверсный моноид локальных автоморфизмов. В данной статье дана классификация конечных коммутативных полугрупп, для которых инверсный моноид локальных автоморфизмов является ∆-полугруппой. A semigroup S is called a ∆-semigroup if the lattice of its congruences forms a chain relative to the inclusion. A local automorphism of the semigroup S is called an isomorphism between its two subsemigroups. The set of all local automorphisms of the semigroup S relative to the ordinary operation of composition of binary relations forms an inverse monoid of local automorphisms. We present a classification of finite commutative semigroups for which the inverse monoid of local automorphisms is a ∆-semigroup.
ISSN:1027-3190