The First Passage Time and Estimation of the Number of Level-Crossings for a Telegraph Process
It is a well-known result that almost all sample paths of a Brownian motion or Wiener process {W(t)} have infinitely many zero-crossings in the interval (0, δ) for δ > 0. Under the Kac condition, the telegraph process weakly converges to the Wiener process. We estimate the number of intersections...
Збережено в:
| Опубліковано в: : | Український математичний журнал |
|---|---|
| Дата: | 2015 |
| Автори: | , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2015
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/165681 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | The First Passage Time and Estimation of the Number of Level-Crossings for a Telegraph Process / A.A. Pogorui, R.M. Rodríguez-Dagnino, T. Kolomiets // Український математичний журнал. — 2015. — Т. 67, № 7. — С. 882–889. — Бібліогр.: 10 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | It is a well-known result that almost all sample paths of a Brownian motion or Wiener process {W(t)} have infinitely many zero-crossings in the interval (0, δ) for δ > 0. Under the Kac condition, the telegraph process weakly converges to the Wiener process. We estimate the number of intersections of a level or the number of level-crossings for the telegraph process. Passing to the limit under the Kac condition, we also obtain an estimate of the level-crossings for the Wiener process.
Відомо, що майже всі ви6іркові траєкторії броунівського руху чи вінєрівського процесу {W(t) мають нескінченно багато нульових перетинів в інтервалі (0, δ) при δ > 0. За умови Каца телеграфний процес слабко збігається до вінерівського процесу. В роботі оцінюється число перетинів рівня для телеграфного процесу. Переходячи до границі за умови Каца, ми також отримуємо оцінку перетинів рівня для вінерівського процесу.
|
|---|---|
| ISSN: | 1027-3190 |