Эллиптические операторы в уточненной шкале функциональных пространств
Вивчається теорія еліптичних граничних задач в уточненій двосторонній шкалі просторів Хер-мандера Hs,φ де s ∈ R, φ — повільно змінний на +∞ функціональний параметр. У випадку просторів Соболєва Hs функція φ(|ξ|)≡1. Встановлено фредгольмовість розглянутих операторів, глобальну та локальну регулярніст...
Gespeichert in:
| Veröffentlicht in: | Український математичний журнал |
|---|---|
| Datum: | 2005 |
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | Russian |
| Veröffentlicht: |
Інститут математики НАН України
2005
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/165741 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Эллиптические операторы в уточненной шкале функциональных пространств / В.А. Михайлец, А.А. Мурач // Український математичний журнал. — 2005. — Т. 57, № 5. — С. 689–696. — Бібліогр.: 11 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | Вивчається теорія еліптичних граничних задач в уточненій двосторонній шкалі просторів Хер-мандера Hs,φ де s ∈ R, φ — повільно змінний на +∞ функціональний параметр. У випадку просторів Соболєва Hs функція φ(|ξ|)≡1. Встановлено фредгольмовість розглянутих операторів, глобальну та локальну регулярність розв'язків.
We study the theory of elliptic boundary-value problems in the refined two-sided scale of the Hormander spaces Hs,φ, where s ∈ R, φ is a functional parameter slowly varying on +∞. In the case of the Sobolev spaces Hs, the function φ(|ξ|)≡1. We establish that the considered operators possess the properties of the Fredholm operators, and the solutions are globally and locally regular.
|
|---|---|
| ISSN: | 1027-3190 |