Analog of the Liouville Equation and BBGKY Hierarchy for a System of Hard Spheres with Inelastic Collisions
Dynamics of a system of hard spheres with inelastic collisions is investigated. This system is a model for granular flow. The map induced by a shift along the trajectory does not preserve the volume of the phase space, and the corresponding Jacobian is different from one. A special distribution func...
Gespeichert in:
| Datum: | 2005 |
|---|---|
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2005
|
| Schriftenreihe: | Український математичний журнал |
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/165750 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Analog of the Liouville Equation and BBGKY Hierarchy for a System of Hard Spheres with Inelastic Collisions / D.Ya. Petrina, G.L. Caraffini // Український математичний журнал. — 2005. — Т. 57, № 6. — С. 818–839. — Бібліогр.: 4 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | Dynamics of a system of hard spheres with inelastic collisions is investigated. This system is a model for granular flow. The map induced by a shift along the trajectory does not preserve the volume of the phase space, and the corresponding Jacobian is different from one. A special distribution function is defined as the product of the usual distribution function and the squared Jacobian. For this distribution function, the Liouville equation with boundary condition is derived. A sequence of correlation functions is defined for canonical and grand canonical ensemble. The generalized BBGKY hierarchy and boundary condition are deduced for correlation functions. |
|---|