Быстроубывающее решение начально-краевой задачи для цепочки Тоды

Методом оберненої задачі розсіяння досліджується початково-крайова задача з нульовою крайовою умовою для ланцюжка Тоди. Доведено існування та єдиність швидкоспадного розв'язку. Вказано клас початкових даних, який забезпечує існування швидкоспадного розв'язку. Using the inverse scattering t...

Full description

Saved in:
Bibliographic Details
Published in:Український математичний журнал
Date:2005
Main Author: Ханмамедов, А.Х.
Format: Article
Language:Russian
Published: Інститут математики НАН України 2005
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/165825
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Быстроубывающее решение начально-краевой задачи для цепочки Тоды / А.Х. Ханмамедов // Український математичний журнал. — 2005. — Т. 57, № 8. — С. 1144 – 1152. — Бібліогр.: 7 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:Методом оберненої задачі розсіяння досліджується початково-крайова задача з нульовою крайовою умовою для ланцюжка Тоди. Доведено існування та єдиність швидкоспадного розв'язку. Вказано клас початкових даних, який забезпечує існування швидкоспадного розв'язку. Using the inverse scattering transform, we investigate an initial boundary-value problem with zero boundary condition for the Toda lattice. We prove the existence and uniqueness of a rapidly decreasing solution and determine a class of initial data that guarantees the existence of a rapidly decreasing solution.
ISSN:1027-3190