Мерозначные диффузии и континуальные системы взаимодействующих частиц в случайной среде

Розглянуто континуальні системи стохастичних рівнянь, що описують рух у випадковому середовищі сім'ї взаємодіючих частинок, маса яких може змінюватись із часом. Припускається, що рух кожної частинки залежить не лише від її положення в даний момент часу, але й від розподілу загальної маси частин...

Full description

Saved in:
Bibliographic Details
Published in:Український математичний журнал
Date:2005
Main Author: Пилипенко, А.Ю.
Format: Article
Language:Russian
Published: Інститут математики НАН України 2005
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/165835
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Мерозначные диффузии и континуальные системы взаимодействующих частиц в случайной среде / А.Ю. Пилипенко // Український математичний журнал. — 2005. — Т. 57, № 9. — С. 1289–1301. — Бібліогр.: 11 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:Розглянуто континуальні системи стохастичних рівнянь, що описують рух у випадковому середовищі сім'ї взаємодіючих частинок, маса яких може змінюватись із часом. Припускається, що рух кожної частинки залежить не лише від її положення в даний момент часу, але й від розподілу загальної маси частинок. Доведено теорему існування та єдиності, неперервну залежність від розподілу початкової маси, марковську властивість. Крім того, при певних технічних умовах мірозначні дифузії, введені A. В. Скороходом, можна одержати як розподіли маси таких систем частинок. We consider continual systems of stochastic equations describing the motion of a family of interacting particles whose mass can vary in time in a random medium. It is assumed that the motion of every particle depends not only on its location at given time but also on the distribution of the total mass of particles. We prove a theorem on unique existence, continuous dependence on the distribution of the initial mass, and the Markov property. Moreover, under certain technical conditions, one can obtain the measure-valued diffusions introduced by Skorokhod as the distributions of the mass of such systems of particles.
ISSN:1027-3190