Про властивості субдиференціальних відображень у просторах Фреше
Наведено умови, за яких субдиференціал власного опуклого напівнеперервного знизу функціонала у просторі Фреше є обмеженим та напівнеперервним зверху відображенням. Теорема про обмеженість субдиференціала є новою і для банахових просторів. Доведено узагальнену теорему Вейєрштрасса у просторах Фреше т...
Gespeichert in:
| Veröffentlicht in: | Український математичний журнал |
|---|---|
| Datum: | 2005 |
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | Ukrainian |
| Veröffentlicht: |
Інститут математики НАН України
2005
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/165841 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Про властивості субдиференціальних відображень у просторах Фреше / П.О. Касьянов, В.С. Мельник // Український математичний журнал. — 2005. — Т. 57, № 10. — С. 1385–1394. — Бібліогр.: 10 назв. — укр. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | Наведено умови, за яких субдиференціал власного опуклого напівнеперервного знизу функціонала у просторі Фреше є обмеженим та напівнеперервним зверху відображенням. Теорема про обмеженість субдиференціала є новою і для банахових просторів. Доведено узагальнену теорему Вейєрштрасса у просторах Фреше та вивчено варіаційну нерівність з множиннозначним відображенням.
We present conditions under which the subdifferential of a proper convex lower-semicontinuous functional in a Fréchet space is a bounded upper-semicontinuous mapping. The theorem on the boundedness of a subdifferential is also new for Banach spaces. We prove a generalized Weierstrass theorem in Fréchet spaces and study a variational inequality with a set-valued mapping.
|
|---|---|
| ISSN: | 1027-3190 |