A New Characterization of PSL(2, q) for Some q

Let G be a finite group and let π e (G) be the set of orders of elements from G. Let k ∈ π e (G) and let m k be the number of elements of order k in G. We set nse (G) := {m k | k ∈ π e (G)}. It is proved that PSL(2, q) are uniquely determined by nse (PSL(2, q)), where q ∈ {5, 7, 8, 9, 11, 13}. As th...

Full description

Saved in:
Bibliographic Details
Published in:Український математичний журнал
Date:2015
Main Authors: Asboei, A.K., Amiri, S.S.S., Iranmanesh, A.
Format: Article
Language:English
Published: Інститут математики НАН України 2015
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/165855
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:A New Characterization of PSL(2, q) for Some q / A.K. Asboei, S.S.S. Amiri, A. Iranmanesh // Український математичний журнал. — 2015. — Т. 67, № 9. — С. 1155–1162. — Бібліогр.: 14 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-165855
record_format dspace
spelling Asboei, A.K.
Amiri, S.S.S.
Iranmanesh, A.
2020-02-16T20:30:45Z
2020-02-16T20:30:45Z
2015
A New Characterization of PSL(2, q) for Some q / A.K. Asboei, S.S.S. Amiri, A. Iranmanesh // Український математичний журнал. — 2015. — Т. 67, № 9. — С. 1155–1162. — Бібліогр.: 14 назв. — англ.
1027-3190
https://nasplib.isofts.kiev.ua/handle/123456789/165855
512.5
Let G be a finite group and let π e (G) be the set of orders of elements from G. Let k ∈ π e (G) and let m k be the number of elements of order k in G. We set nse (G) := {m k | k ∈ π e (G)}. It is proved that PSL(2, q) are uniquely determined by nse (PSL(2, q)), where q ∈ {5, 7, 8, 9, 11, 13}. As the main result of the paper, we prove that if G is a group such that nse (G) = nse (PSL(2, q)), where q ∈ {16, 17, 19, 23}, then G ≅ PSL(2, q).
Нехай G — скінченна група, а πe(G) — множина порядків елемента з G. Нехай також k∈πe(G), а mk — число елементів порядку k в G. Покладемо nse (G):={mk|k∈πe(G)}. Доведено, що PSL(2,q) однозначно визначаються nse (PSL(2,q)), де q∈{5,7,8,9,11,13}. Основним результатом роботи є доведення того факту, що якщо G є групою, для якої nse (G)=nse(PSL(2,q)), де q∈16,17,19,23, то G≅PSL(2,q).
Partial support by the Center of Excellence of Algebraic Hyper structures and its Applications of Tarbiat Modares University (CEAHA) is gratefully acknowledge by the third author
en
Інститут математики НАН України
Український математичний журнал
Статті
A New Characterization of PSL(2, q) for Some q
Нова характеристика PSL(2,q) для деякого q
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title A New Characterization of PSL(2, q) for Some q
spellingShingle A New Characterization of PSL(2, q) for Some q
Asboei, A.K.
Amiri, S.S.S.
Iranmanesh, A.
Статті
title_short A New Characterization of PSL(2, q) for Some q
title_full A New Characterization of PSL(2, q) for Some q
title_fullStr A New Characterization of PSL(2, q) for Some q
title_full_unstemmed A New Characterization of PSL(2, q) for Some q
title_sort new characterization of psl(2, q) for some q
author Asboei, A.K.
Amiri, S.S.S.
Iranmanesh, A.
author_facet Asboei, A.K.
Amiri, S.S.S.
Iranmanesh, A.
topic Статті
topic_facet Статті
publishDate 2015
language English
container_title Український математичний журнал
publisher Інститут математики НАН України
format Article
title_alt Нова характеристика PSL(2,q) для деякого q
description Let G be a finite group and let π e (G) be the set of orders of elements from G. Let k ∈ π e (G) and let m k be the number of elements of order k in G. We set nse (G) := {m k | k ∈ π e (G)}. It is proved that PSL(2, q) are uniquely determined by nse (PSL(2, q)), where q ∈ {5, 7, 8, 9, 11, 13}. As the main result of the paper, we prove that if G is a group such that nse (G) = nse (PSL(2, q)), where q ∈ {16, 17, 19, 23}, then G ≅ PSL(2, q). Нехай G — скінченна група, а πe(G) — множина порядків елемента з G. Нехай також k∈πe(G), а mk — число елементів порядку k в G. Покладемо nse (G):={mk|k∈πe(G)}. Доведено, що PSL(2,q) однозначно визначаються nse (PSL(2,q)), де q∈{5,7,8,9,11,13}. Основним результатом роботи є доведення того факту, що якщо G є групою, для якої nse (G)=nse(PSL(2,q)), де q∈16,17,19,23, то G≅PSL(2,q).
issn 1027-3190
url https://nasplib.isofts.kiev.ua/handle/123456789/165855
fulltext
citation_txt A New Characterization of PSL(2, q) for Some q / A.K. Asboei, S.S.S. Amiri, A. Iranmanesh // Український математичний журнал. — 2015. — Т. 67, № 9. — С. 1155–1162. — Бібліогр.: 14 назв. — англ.
work_keys_str_mv AT asboeiak anewcharacterizationofpsl2qforsomeq
AT amirisss anewcharacterizationofpsl2qforsomeq
AT iranmanesha anewcharacterizationofpsl2qforsomeq
AT asboeiak novaharakteristikapsl2qdlâdeâkogoq
AT amirisss novaharakteristikapsl2qdlâdeâkogoq
AT iranmanesha novaharakteristikapsl2qdlâdeâkogoq
AT asboeiak newcharacterizationofpsl2qforsomeq
AT amirisss newcharacterizationofpsl2qforsomeq
AT iranmanesha newcharacterizationofpsl2qforsomeq
first_indexed 2025-11-24T04:54:02Z
last_indexed 2025-11-24T04:54:02Z
_version_ 1850840849722638336