Some Remarks on Spectral Synthesis Sets

Relations between the difference spectra of unions and intersections are studied and their implications on some problems in spectral synthesis are observed. Вивчаються взаємозв'язки між різницєвими спектрами об'єднань та перетинів. Встановлено їхні наслідки для деяких проблем спектрального...

Full description

Saved in:
Bibliographic Details
Published in:Український математичний журнал
Date:2015
Main Authors: Joseph, J., Muraleedharan, T.K.
Format: Article
Language:English
Published: Інститут математики НАН України 2015
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/165866
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Some Remarks on Spectral Synthesis Sets / J. Joseph & T.K. Muraleedharan // Український математичний журнал. — 2015. — Т. 67, № 10. — С. 1434–1438. — Бібліогр.: 11 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-165866
record_format dspace
spelling Joseph, J.
Muraleedharan, T.K.
2020-02-16T20:36:16Z
2020-02-16T20:36:16Z
2015
Some Remarks on Spectral Synthesis Sets / J. Joseph & T.K. Muraleedharan // Український математичний журнал. — 2015. — Т. 67, № 10. — С. 1434–1438. — Бібліогр.: 11 назв. — англ.
1027-3190
https://nasplib.isofts.kiev.ua/handle/123456789/165866
517.9
Relations between the difference spectra of unions and intersections are studied and their implications on some problems in spectral synthesis are observed.
Вивчаються взаємозв'язки між різницєвими спектрами об'єднань та перетинів. Встановлено їхні наслідки для деяких проблем спектрального синтезу.
en
Інститут математики НАН України
Український математичний журнал
Короткі повідомлення
Some Remarks on Spectral Synthesis Sets
Деякі зауваження щодо множин спектрального синтезу
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Some Remarks on Spectral Synthesis Sets
spellingShingle Some Remarks on Spectral Synthesis Sets
Joseph, J.
Muraleedharan, T.K.
Короткі повідомлення
title_short Some Remarks on Spectral Synthesis Sets
title_full Some Remarks on Spectral Synthesis Sets
title_fullStr Some Remarks on Spectral Synthesis Sets
title_full_unstemmed Some Remarks on Spectral Synthesis Sets
title_sort some remarks on spectral synthesis sets
author Joseph, J.
Muraleedharan, T.K.
author_facet Joseph, J.
Muraleedharan, T.K.
topic Короткі повідомлення
topic_facet Короткі повідомлення
publishDate 2015
language English
container_title Український математичний журнал
publisher Інститут математики НАН України
format Article
title_alt Деякі зауваження щодо множин спектрального синтезу
description Relations between the difference spectra of unions and intersections are studied and their implications on some problems in spectral synthesis are observed. Вивчаються взаємозв'язки між різницєвими спектрами об'єднань та перетинів. Встановлено їхні наслідки для деяких проблем спектрального синтезу.
issn 1027-3190
url https://nasplib.isofts.kiev.ua/handle/123456789/165866
citation_txt Some Remarks on Spectral Synthesis Sets / J. Joseph & T.K. Muraleedharan // Український математичний журнал. — 2015. — Т. 67, № 10. — С. 1434–1438. — Бібліогр.: 11 назв. — англ.
work_keys_str_mv AT josephj someremarksonspectralsynthesissets
AT muraleedharantk someremarksonspectralsynthesissets
AT josephj deâkízauvažennâŝodomnožinspektralʹnogosintezu
AT muraleedharantk deâkízauvažennâŝodomnožinspektralʹnogosintezu
first_indexed 2025-11-26T00:12:39Z
last_indexed 2025-11-26T00:12:39Z
_version_ 1850596489343008768
fulltext К О Р О Т К I П О В I Д О М Л Е Н Н Я UDC 517.9 J. Joseph, T. K. Muraleedharan (St. Joseph’s College Devagiri, Kozhikode, India) SOME REMARKS ON SPECTRAL SYNTHESIS SETS ДЕЯКI ЗАУВАЖЕННЯ ЩОДО МНОЖИН СПЕКТРАЛЬНОГО СИНТЕЗУ Relations between the difference spectra of unions and intersections are studied and their implications on some problems in spectral synthesis are observed. Вивчаються взаємозв’язки мiж рiзницевими спектрами об’єднань та перетинiв. Встановлено їхнi наслiдки для деяких проблем спектрального синтезу. 1. Introduction. The question whether the union of two spectral synthesis sets is again a spectral synthesis set and whether every spectral synthesis set is a Wiener – Ditkin set are outstanding open problems in commutative harmonic analysis. In connection with the study of such problems in spectral synthesis Stegeman [9] introduced the difference spectrum and later the idea was systematically exploited by him in [10]. Difference spectrum is a union of perfect sets and is closed if the group is metrizable. But, for non metrizable groups, Salinger and Stegeman [8] proved that the difference spectrum need not be closed. This article studies certain relations between the difference spectrum of the unions and intersections of closed sets, and the corresponding unions and intersections of the difference spectra. Their implications on some problems in spectral synthesis are also studied. If G is the character group of the locally compact Abelian group, then A(G), Fourier algebra, is the algebra of Fourier transforms of functions in the convolution algebra L1(Γ). If f ∈ A(G), then f = φ̂, for some φ ∈ L1(Γ). Define ‖f‖A(G) = ‖φ‖L1(Γ), then A(G) becomes a commutative regular semisimple Banach algebra isometrically isomorphic to L1(Γ), which is identified as a predual of a group von Neumann algebra [2]. For the notations we follow [4], [6] and [10]. Suppose x ∈ G, f, g ∈ A(G) and I, J are ideals in A(G). We use the notation f =x g if f and g agree in some neighborhood of x, f ∈x I if f =x g for some g ∈ I, I ⊂x J if f ∈x J for every f ∈ I and I =x J if I ⊂x J and J ⊂x I. For a closed subset E of G, I(E) = {f ∈ A(G) : f = 0 on E}, j(E) = {f ∈ A(G) : suppf ∩ E = ∅} and J(E) = j(E). Then J(E) ⊂ I ⊂ I(E) for every closed ideal I of A(G) with zero set E. E is called a set of synthesis or spectral synthesis set if I(E) = J(E) and E is said to be Wiener – Ditkin set ( Calderon set or C-set ) if f ∈ fj(E) for every f ∈ I(E). Evidently, every Wiener – Ditkin set is a spectral set. We recall the definition of ∆(E), the difference spectrum of a closed set E : ∆(E) = {x : I(E) 6=x J(E)} so that ∆(E) is a union of perfect subsets of ∂(E), the boundary of E. E is a set of spectral synthesis if and only if ∆(E) = ∅ [10]. Also the n-difference spectrum is ∆n(E) = ⋃ f∈I(E){x ∈ G : fn /∈x J(E)} so that E is an n-weak synthesis set if and only if ∆n(E) = ∅ and ∆m(E) 6= ∅ for all m < n [6]. The 1-difference spectrum is nothing but the difference spectrum ∆(E) and the 1-weak synthesis set is the synthesis set. We use the notation B(x, r) for the closed ball with center x and radius r ≥ 0. c© J. JOSEPH, T. K. MURALEEDHARAN, 2015 1434 ISSN 1027-3190. Укр. мат. журн., 2015, т. 67, № 10 SOME REMARKS ON SPECTRAL SYNTHESIS SETS 1435 2. Difference spectra of sets and its subsets. The entire set G itself is a synthesis set, so in general, it is not true that a subset of a spectral synthesis set is again a spectral synthesis set, unless G is discrete. Theorem 1. If E ⊂ R, x ∈ E and V = E ∩ B(x, r), then ∆(V ) ⊂ ∆(E). Moreover if r > 0, then there are points x1, x2, . . . in E which satisfy ∆(E) ⊂ ∪∆(Vi), where Vi = E ∩B(xi, r). Proof. Let y ∈ ∆(V ) then y ∈ ∂E. If y ∈ ∂B(x, r), boundary of an interval, and since ∆(V ) is a union of perfect sets there is a y′ ∈ ∆(V ) such that |x−y′| < |x−y|. Otherwise let y′ = y. Choose a neighborhood U of y′ such that U ∩E ⊂ V. Pick k ∈ A(G) with k = 1 near y′ and supp k ⊂ U. So there exists f ∈ I(V ) such that f /∈y′ J(V ). Then fk ∈ I(E), f =y′ fk and since J(V ) ⊃ J(E), y′ ∈ ∆(E). Since y is the limit of such points y′ and ∆(E) is closed, the first part of the statement follows. For the second part, let x ∈ ∆(E) and V = E ∩B(x, r), choose f ∈ I(E) and f /∈x J(E), and r1 = r 2 . Let U be the open ball with center x and radius r1. Choose k ∈ A(G) with k = 1 near x and supp k ⊂ U. Then f =x fk and J(E) =x J(V ) hence f /∈x J(V ). The same argument works not only for x but for all the points in the r1 neighborhood of x and hence the proof. The first part of the above theorem is not true for Rn if n > 2, for let E = {x ∈ Rn : ‖x‖ ≥ 1} ∪ {0}. At the same time, the second part of the above theorem is true for Rn, n > 1, as well (essentially the same proof works). So if E ⊂ Rn then ∆(E) ⊂ ⋃ xi∈E ∆(Vi), where Vi = E ∩ B(xi, r), which, in particular, implies the known result that if each point of a set has a relative synthesis neighborhood then the set itself is a synthesis set. For the n-difference spectrum, however, we have the following result: ∆n(E) ⊂ ⋃ xi∈E ∆n(Vi), so that if each Vi is a weak synthesis set with characteristic less than or equal to n then E itself is a weak synthesis set with characteristic less than or equal to n. Using the above theorem it is easy to construct examples of non synthesis sets in R3. Let G1 and G2 are locally compact Abelian groups and let α : G1 → G2 be injective, continuous homomorphism. Assume that E1 ⊂ G1 is compact and E2 = αE1. Then it is proved in [1] that E1 is a synthesis set if and only if E2 is a synthesis set. This result shows that any sphere of positive radius is a non synthesis set in R3. Due to the symmetry of S2, the unit sphere in R3, ∆(S2) = S2. Now S2 ∩B(x, r), r > 0, x ∈ S2, is a non synthesis set in R3. So the union of pieces of different spheres is also a non-synthesis set in R3. Similarly many curves in R2 are examples of synthesis set in R2 since S1 is a synthesis set. For E,F ⊂ G and x ∈ G, we recall that E =x F means E ∩V = F ∩V for some neighborhood V of x. Now we use the following lemma to prove a theorem. Lemma 1 [6]. Let E,F ⊂ G and x ∈ G. If E =x F, then (i) J(E) =x J(F ) and (ii) ∆(E) =x ∆(F ). Theorem 2. For a closed subset E of R and r > 0, there is a collection of closed sets Vi = = E ∩ B(xi, r), i = 1, 2, 3, . . . , such that ∆(E) = ∪∆(Vi). Moreover for i 6= j, ∆(Vi) ∩∆(Vj) is either empty or a singleton set. Proof. Choose a closed interval F containing E. Let x1, x2, . . . be a sequence of real numbers in F such that for i 6= j, B(xi, r)∩B(xj , r) is either empty or a singleton set and F = ∪B(xi, r). Then E = E ∩ F = ∪(E ∩ B(xi, r)) = ∪Vi. Let ⋃ i,j,i6=j Vi ∩ Vj = {y1, y2, . . .}. So ∆(E) = ∆(∪Vi) ⊂ ⊂ ∪∆(Vi) ∪ {y1, y2, . . .}. This follows from the fact that if y ∈ ∆(E) and y 6= yn, n = 1, 2, . . . , then y ∈ Vk for some k. Now choose U, a neighborhood of y such that U ∩ Vj = ∅ for j 6= k. Now ∪Vi =y Vk and y ∈ ∆(Vk) by Lemma 1. ISSN 1027-3190. Укр. мат. журн., 2015, т. 67, № 10 1436 J. JOSEPH, T. K. MURALEEDHARAN Now if yn ∈ ∆(∪Vi), then yn ∈ ∆(Vj) for some j so that ∆(∪Vi) ⊂ ∪∆(Vi). To prove this, let yn ∈ ∆(∪Vi). Then yn belongs to exactly one of the sets, say Vk or two such sets Vl and Vm. If yn ∈ Vk for a unique k, then as above Vk =yn ∪Vi. Otherwise if yn ∈ Vl ∩ Vj and since ∆(∪Vi) is a perfect set there is a sequence in ∆(∪Vi) which converges to yn. But such sequences are either in Vl or in Vm. As in the first case, yn s are in ∆(Vl) or in ∆(Vm) so its limits also. Now the result follows from the above theorem. Choose a non synthesis set E in R, the existence of such sets follows from the Malliavin’s theorem, so that ∆(E) 6= ∅. For any r > 0, there are sets V1, V2 . . . , as described above, which satisfy the relation ∆(E) ⊂ ∪∆(Vi). So for some i, ∆(Vi) 6= ∅. Since translates of a non synthesis set are again non synthesis sets, any interval of positive length contains a non synthesis set. Due to the relation ∆(E1 × E2) ⊃ E1 ×∆(E2) ∪∆(E1)× E2 [6], it is easy to see that if either E1 or E2 is a non synthesis set, then E1 × E2 is a non synthesis set. So in Rn, n ≥ 1, any set of positive Lebesgue measure contains a non synthesis set. For a closed setE of R, let V1 = E∩B(x, r1) and V2 = E∩B(x, r2). Then ∆(V1∩V2) = ∆(V1)∩ ∩∆(V2). Now the natural question is whether ∆ ( ⋂∞ i=1 Vi) = ⋂∞ i=1 ∆(Vi), where V1 ⊃ V2 ⊃ . . . and Vi = E ∩ B(x, ri). In R3, the corresponding result is not true: for, let E = { x ∈ R3 : ‖x‖ ≤ 2 } \{ x ∈ R3 : 1 2 < ‖x‖ < 1 } and Vn = E ∩ B ( x, 1 + 1 n ) . Then V1 ⊃ V2 ⊃ . . . and ∆(∩Vn) = S2, but ∩∆(Vn) = ∅. Even in R this result is not true. Consider a non synthesis set E in R so that ∅ 6= E′ = ∆(E), a union of perfect sets. Choose x ∈ E′ and for each positive integer, let Vn = B ( x, 1 n ) ∩E. Each Vn is a non synthesis set so that ∆(Vn) 6= ∅. As n→∞, ∆(∩Vn) = ∅ but ∩∆(Vn) = {x}. Corollary 1. Let E be a closed subset of R. Then ∆ ( ⋂∞ i=1 Vi) ⊂ ⋂∞ i=1 ∆(Vi), where Vi = = E ∩B(x, ri). Proof. ∆(∩Vi) ⊂ ∆(Vi) for each i since ∩Vi ⊂ Vi. LetE = E0,0 = [0, 1].Now see the following sequence of closed sets {Vi} satisfying the condition V1 ⊃ V2 ⊃ . . . . For any two disjoint closed balls E(1,1), E(1,2) in E, let V1 = E(1,1) ∪ E(1,2). In general, for n = 1, 2, 3, . . . , let Vn = E(n,1) ∪E(n,2) ∪ . . .∪E(n,2n), where E(n,2i−1), E(n,2i) are any two disjoint closed balls in E(n−1,i), i = 1, 2, 3, . . . , 2n−1. Clearly, ∆ ( ⋂n i=1 Vi) = ⋂n i=1 ∆(Vi). Is it possible to conclude that ∆ ( ⋂∞ i=1 Vi) ⊂ ⋂∞ i=1 ∆(Vi)? If it is true, in particular, it shows that the Cantor set is a set of spectral synthesis, a result proved by Herz [3]. 3. Difference spectra of unions and intersections. A closed subset E of G is said to be a Wiener – Ditkin set if whenever f ∈ I(E), f ∈ fj(E). For a subset E of G define Γ(E) = = ∪f∈I(E){x ∈ G : f /∈x fj(E)} so that, E is a Wiener – Ditkin set if and only if Γ(E) = ∅. Clearly ∆(E) ⊂ Γ(E), but the other inclusion, the C-set-S-set problem, is a major unsolved problem in commutative harmonic analysis. A weaker form of this, ‘the weak C-set-S-set problem’ is discussed recently in [7]. As we mentioned in the introduction, the question whether the union of two spectral synthesis sets is again a spectral synthesis set is a well known, difficult open problem. For any two closed sets E1 and E2, the relation ∆(E1 ∪ E2) ⊂ ∆(E1) ∪∆(E2) or a positive answer to the C-set-S-set problem gives an easy solution to the union problem. Our next aim is to find a relation between the difference spectrum of unions and unions of difference spectra. For closed subsets E1 and E2 of G, we introduce two sets E1,2 and E2,1 as follows. Let E1,2 = {x ∈ ∂E1 ∩ ∂E2 ∩ ∂(E1 ∪ E2) : ISSN 1027-3190. Укр. мат. журн., 2015, т. 67, № 10 SOME REMARKS ON SPECTRAL SYNTHESIS SETS 1437 x is a limit point of E1 \ E2} and E2,1 = {x ∈ ∂E1 ∩ ∂E2 ∩ ∂(E1 ∪ E2) : x is a limit point of E2 \ E1}. Lemma 2. Let E1 and E2 be closed sets in G. Then ∆(E1 ∪E2) ⊂ ∆(E1)∪∆(E2)∪Γ(E1,2 ∩ ∩ E2,1). Proof. Assume that x does not belong to the right-hand side of the desired inclusion and x ∈ ∂(E1 ∪E2). Then I(E1 ∪E2)j(E1,2 ∩E2,1) ⊂x J(E1 ∪E2). To prove this, if x ∈ (E1,2 ∩E2,1) then j(E1,2 ∩ E2,1) ∈x j(E1 ∪ E2) and if x ∈ (E1,2 ∩ E2,1)c ∩ E1, I(E1 ∪ E2) ⊂ I(E1) =x =x J(E1) =x J(E1∪E2). Similar proofs hold for x ∈ (E1,2∩E2,1)c∩E2. Now let f ∈ I(E1∪E2). Then f ∈x fj(E1,2 ∩ E2,1) ⊂x I(E1 ∪ E2)J(E1,2 ∩ E2,1) ⊂x J(E1 ∪E2). So x /∈ ∆(E1 ∪E2) and the result follows. Theorem 3. If E1, E2 are synthesis sets and if E1,2∩E2,1 is a Wiener – Ditkin set, then E1∪E2 is a synthesis set. Proof. Since ∆(E1) = ∆(E2) = Γ(E1,2 ∩ E2,1) = ∅, the result follows. In the above relation one can replace E1,2 ∩E2,1 with any set F that lies in between E1,2 ∩E2,1 and E1 ∪ E2. So if E1 and E2 are synthesis sets and F is a Wiener – Ditkin set, then E1 ∪ E2 is a synthesis set. Whether Γ(E1,2 ∩ E2,1) can be replaced with ∆(E1,2 ∩ E2,1) in the above lemma is another interesting problem (see also [10]). For results about intersections, we define two sets as follows. For two closed sets E1, E2 in G, let E′1,2 = {x ∈ ∂E1 ∩ ∂E2 : x is a limit point of E1 \ E2} and E′2,1 = {x ∈ ∂E1 ∩ ∂E2 : x is a limit point of E2 \ E1}. Lemma 3. If E1, E2 are closed sets in G, then ∆(E1∩E2) ⊂ ∆(E1)∪∆(E2)∪Γ(E′1,2∩E′2,1). Proof. Assume that x /∈ ∆(E1)∪∆(E2)∪Γ(E′1,2∩E′2,1) and x ∈ ∂(E1∩E2) ⊂ ∂(E1)∩∂(E2). Then I(E1 ∩ E2)j(E′1,2 ∩ E′2,1) ⊂x J(E1 ∩ E2). To prove this let x ∈ E′1,2 ∩ E′2,1. Then j(E′1,2 ∩ ∩ E′2,1) ⊂x j(E1 ∩ E2). If x ∈ (E′1,2 ∩ E′2,1)c ∩ E1, then I(E1 ∩ E2) =x I(E1) =x J(E1) ⊂x ⊂x J(E1 ∩ E2). If f ∈ I(E1 ∩ E2) ⊂ I(E′1,2 ∩ E′2,1), then f ∈x fj(E′1,2 ∩ E′2,1) ∈x J(E1 ∩ E2). Consequently x /∈ ∆(E1 ∩ E2) and the theorem follows. Now we have the following result for the intersection of two synthesis sets, which is an improve- ment of a result in [4] and the proof follows immediately from Lemma 3. Theorem 4. If E1, E2 are synthesis sets and if E′1,2∩E′2,1 is a Wiener – Ditkin set, then E1∩E2 is a synthesis set. Consider R3 and let E1 = B((0, 0, 0), 2) and E2 = B((3, 0, 0), 2). Then E1,2 ∩ E2,1 is a circle which contains perfect sets. Similar conclusion holds for n > 3 also. In [11], Varopoulose proved that every compact Abelian group G contains two sets of spectral synthesis whose intersection is not of synthesis. Let E1 and E2 be non synthesis sets in a compact group G such that E1 ∩E2 is not of synthesis. So, R×E1 and R×E2 are synthesis sets and R×E1 ∩R×E2 = R× (E1 ∩E2) is not a synthesis set. Now by the Structure theorem, the compact Abelian group in Varopoulose result can be replaced by any non discrete locally compact Abelian group (see [5]). Recall that any set which does not contain a perfect set is a Wiener – Ditkin set. So there are synthesis sets E1 and E2 in R such that E′1,2 ∩E′2,1 contains perfect sets. But in R, can the set E1,2 ∩E2,1, a still smaller set, ever contain a perfect set? If the answer is no, it shows that the union of two synthesis sets is again a synthesis set in R. In R2 also the details of such sets are not known. The idea of weak Wiener – Ditkin set (weak C-set) has been introduced and studied in [7]. A closed subset E of G is called an n-weak Wiener – Ditkin set if fn ∈ fj(E) for all f ∈ I(E). Thus E is an n-weak Wiener – Ditkin set if and only if Γn(E) = ∅ and Γm(E) 6= ∅ for all m < n, where Γn(E) = ⋃ f∈I(E){x : fn /∈x fj(E)}. Note that the 1-weak Wiener – Ditkin set is nothing but the ISSN 1027-3190. Укр. мат. журн., 2015, т. 67, № 10 1438 J. JOSEPH, T. K. MURALEEDHARAN Wiener – Ditkin set and Γ1(E) = Γ(E). Now for the n-difference spectrum we have the following result. Theorem 5. Let E1 and E2 be closed sets in G. Then ∆2n−1(E1 ∪E2) ⊂ ∆n(E1)∪∆n(E2)∪ ∪ Γn(E1 ∩ E2). Proof. Assume that x does not belong to the right-hand side of the inclusion and x ∈ ∂(E1∪E2). Then In(E1 ∪ E2)j(E1 ∩ E2) ⊂x J(E1 ∪ E2) as in Lemma 2. Let f ∈ I(E1 ∪ E2), then fn ∈x ∈x fj(E1 ∩ E2). So f2n−1 ∈ fnj(E1 ∩ E2) ⊂x In(E1 ∪ E2)j(E1 ∩ E2) ⊂x J(E1 ∪ E2). So x does not belong to the left side of the inclusion and the result follows. Similar arguments give the following improvement of 3.3 in [6]. Theorem 6. Let E1, E2 be closed subsets of G. Then i) ∆2n−1(E1 ∩ E2) ⊂ ∆n(E1) ∪∆n(E2) ∪ Γn(E′1,2 ∩ E′2,1), ii) ∆2n−1(E1 ∪ E2) ⊂ ∆(E1) ∪∆(E2) ∪ Γn(E1,2 ∩ E2,1), iii) ∆2n−1(E1) ∪∆2n−1(E2) ⊂ ∆n(E1 ∪ E2) ∪ Γn(E1,2 ∩ E2,1). Acknowledgement. The authors thank UGC, Govt. of India for the financial support. 1. De Leeuw K., Herz C. An invariance property of spectral synthesis // Ill. J. Math. – 1965. – 9. – P. 220 – 229. 2. Eymard P. L‘algebre de Fourier d‘un groupe localement compact // Bull. Soc. Math. France. – 1964. – 92. – P. 181 – 236. 3. Herz C. S. Spectral synthesis for the Cantor set // Proc. Nat. Acad. Sci. USA. – 1956. – 42. – P. 42 – 43. 4. Muraleedharan T. K., Parthasarathy K. On unions and intersections of sets of synthesis // Proc. Amer. Math. Soc. – 1995. – 123. – P. 1213 – 1216. 5. Muraleedharan T. K. Parthasarathy K., Sujatha Varma. Nonsynthesizable intersections of sets of synthesis // Bull. London Math. Soc. – 1996. – 28. – P. 373 – 374. 6. Muraleedharan T. K., Parthasarathy K. Difference spectrum and spectral synthesis // Tohoku Math. J. – 1999. – 51. – P. 65 – 73. 7. Muraleedharan T. K. Weak Wiener – Ditkin sets // Acta math. hung. – 2011. – 133, № 4. – P. 359 – 364. 8. Salinger D. L., Stegeman J. D. Difference spectra of ideals for non-metrizable groups // J. London Math. Soc. – 1980. – 26. – P. 531 – 540. 9. Stegeman J. D. Extension of a theorem of H. Helson // Proc. Int. Cong. Math. Abstr. 5. – Moscow, 1966. – P. 28. 10. Stegeman J. D. Some problems on spectral synthesis // Proc. Harmonic Analysis (Iraklion, 1978): Lect. Notes Math. – 1980. – 781. – P. 194 – 203. 11. Varopoulos N. Th. Sur les ensembles parfaits et les series trigonometriques // C. r. Acad. Sci. Ser. A–B. – 1966. – 262. – P. A384 – A387. Received 04.02.13, after revision — 04.08.15 ISSN 1027-3190. Укр. мат. журн., 2015, т. 67, № 10