Про суму вузького та скінченновимірного ортогонально адитивних операторів

Известно, что сумма двух линейных непрерывных узких операторов на пространствах Lp при 1 < p < ∞ не обязательно должна быть узким оператором. Однако сумма узкого и компактного линейных непрерывных операторов является узким оператором. В работе М. Плиева и М. Попова начато исследование нелинейн...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Український математичний журнал
Дата:2015
Автор: Гуменчук, Г.І.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Інститут математики НАН України 2015
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/165932
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Про суму вузького та скінченновимірного ортогонально адитивних операторів / Г.І. Гуменчук // Український математичний журнал. — 2015. — Т. 67, № 12. — С. 1620–1625. — Бібліогр.: 16 назв. — укр.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Известно, что сумма двух линейных непрерывных узких операторов на пространствах Lp при 1 < p < ∞ не обязательно должна быть узким оператором. Однако сумма узкого и компактного линейных непрерывных операторов является узким оператором. В работе М. Плиева и М. Попова начато исследование нелинейных узких операторов, в частности ортогонально аддитивных операторов. В настоящей статье доказано, что сумма узкого ортогонально аддитивного оператора и конечномерного латерально-нормировано непрерывного ортогонально аддитивного оператора, действующего из безатомной порядково полной векторной решетки в банахово пространство, является узким оператором. It is well known that the sum of two linear continuous narrow operators in the spaces Lp with 1 < p < ∞ need not be narrow. However, the sum of narrow and compact linear continuous operators is narrow. In a recent paper, M. Pliev and M. Popov started the investigation of nonlinear narrow operators and, in particular, of orthogonally additive operators. As our main result, we prove that the sum of a narrow orthogonally additive operator and a finite-rank laterally-to-norm continuous orthogonally additive operator acting from an atomless Dedekind complete vector lattice into a Banach space is narrow.
ISSN:1027-3190