Inequalities for eigenvalues of a system of higher-order differential equations

We establish some sharper inequalities for eigenvalues of a system of higher-order differential equations. Moreover, we present some sharper estimates for the upper bound of the (k +1)th eigenvalue and the gaps of its consecutive eigenvalues.

Збережено в:
Бібліографічні деталі
Дата:2014
Автор: Sun, H.J.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2014
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/165984
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Inequalities for eigenvalues of a system of higher-order differential equations / H.J. Sun // Український математичний журнал. — 2014. — Т. 66, № 3. — С. 394–403. — Бібліогр.: 10 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-165984
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1659842025-02-23T18:17:42Z Inequalities for eigenvalues of a system of higher-order differential equations Нергоності для власних значень системи диференціальних рівнянь вищого порядку Sun, H.J. Статті We establish some sharper inequalities for eigenvalues of a system of higher-order differential equations. Moreover, we present some sharper estimates for the upper bound of the (k +1)th eigenvalue and the gaps of its consecutive eigenvalues. Встановлено дєякі 6ільш точні оцінки для власних значень системи диференціальних рівнянь вищого порядку. Ми також наводимо деякі більш точні оцінки для оцінки зверху (k +1)-го власного значення i щілин між будь-якими двома послідовними власними значеннями. This paper was supported by the National Natural Science Foundation of China (Grant No.1100113 2014 Article Inequalities for eigenvalues of a system of higher-order differential equations / H.J. Sun // Український математичний журнал. — 2014. — Т. 66, № 3. — С. 394–403. — Бібліогр.: 10 назв. — англ. 1027-3190 https://nasplib.isofts.kiev.ua/handle/123456789/165984 517.9 en Український математичний журнал application/pdf Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Статті
Статті
spellingShingle Статті
Статті
Sun, H.J.
Inequalities for eigenvalues of a system of higher-order differential equations
Український математичний журнал
description We establish some sharper inequalities for eigenvalues of a system of higher-order differential equations. Moreover, we present some sharper estimates for the upper bound of the (k +1)th eigenvalue and the gaps of its consecutive eigenvalues.
format Article
author Sun, H.J.
author_facet Sun, H.J.
author_sort Sun, H.J.
title Inequalities for eigenvalues of a system of higher-order differential equations
title_short Inequalities for eigenvalues of a system of higher-order differential equations
title_full Inequalities for eigenvalues of a system of higher-order differential equations
title_fullStr Inequalities for eigenvalues of a system of higher-order differential equations
title_full_unstemmed Inequalities for eigenvalues of a system of higher-order differential equations
title_sort inequalities for eigenvalues of a system of higher-order differential equations
publisher Інститут математики НАН України
publishDate 2014
topic_facet Статті
url https://nasplib.isofts.kiev.ua/handle/123456789/165984
citation_txt Inequalities for eigenvalues of a system of higher-order differential equations / H.J. Sun // Український математичний журнал. — 2014. — Т. 66, № 3. — С. 394–403. — Бібліогр.: 10 назв. — англ.
series Український математичний журнал
work_keys_str_mv AT sunhj inequalitiesforeigenvaluesofasystemofhigherorderdifferentialequations
AT sunhj nergonostídlâvlasnihznačenʹsistemidiferencíalʹnihrívnânʹviŝogoporâdku
first_indexed 2025-11-24T06:40:52Z
last_indexed 2025-11-24T06:40:52Z
_version_ 1849652886802268160
fulltext UDC 517.9 H.-J. Sun (Nanjing Univ. Sci. and Technology, China) INEQUALITIES FOR EIGENVALUES OF A SYSTEM OF HIGHER-ORDER DIFFERENTIAL EQUATIONS* НЕРIВНОСТI ДЛЯ ВЛАСНИХ ЗНАЧЕНЬ СИСТЕМИ ДИФЕРЕНЦIАЛЬНИХ РIВНЯНЬ ВИЩОГО ПОРЯДКУ We establish some sharper inequalities for eigenvalues of a system of higher-order differential equations. Moreover, we give some sharper estimates for the upper bound of the (k + 1)th eigenvalue and the gaps of its consecutive eigenvalues. Встановлено деякi бiльш точнi оцiнки для власних значень системи диференцiальних рiвнянь вищого порядку. Ми також наводимо деякi бiльш точнi оцiнки для оцiнки зверху (k + 1)-го власного значення i щiлин мiж будь-якими двома послiдовними власними значеннями. 1. Introduction. Let [a, b] ⊂ R and l ≥ 1. We investigate the following Dirichlet eigenvalue problem of a system of higher-order differential equations: (−1)lDl ( a11(x)Dlu1(x) + . . .+ a1n(x)Dlun(x) ) = λρ(x)u1(x), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (−1)lDl ( an1(x)Dlu1(x) + . . .+ ann(x)Dlun(x) ) = λρ(x)un(x), Dtuq(a) = Dtuq(b) = 0, for t = 0, 1, . . . , l − 1 and q = 1, . . . , n, (1.1) where D = d dx , ρ(x) is a positive function on [a, b] and 0 ≤ aij(x) = aji(x) ∈ C l[a, b] for i, j = 1, 2, . . . , n. Assume that the coefficients aij(x), i, j = 1, 2, . . . , n, satisfy the uniform ellipticity assumption: for any column vector ξ = ( ξ1, . . . , ξn )T , there is a positive constant ς such that n∑ i,j=1 aij(x)ξiξj ≥ ς|ξ|2 ∀x ∈ [a, b], (1.2) where |ξ| = (ξ21 + . . . + ξ2n)1/2 denotes the Euclidean norm of ξ. Moreover, we assume that the coefficients aij(x), i, j = 1, 2, . . . , n, satisfy aij(x) ≤ ζ ∀x ∈ [a, b], (1.3) where ζ is a positive constant. Suppose that the weight function satisfies: σ−1 ≤ ρ(x) ≤ τ−1 ∀x ∈ [a, b], (1.4) where σ and τ are two positive constants. This problem is significant in physics, mechanics and engineering. Moreover, the weight function ρ denotes the density. Weighted estimates for eigenvalues have many applications (see [6, 7]). * This paper was supported by the National Natural Science Foundation of China (Grant No.11001130). c© H.-J. SUN, 2014 394 ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 3 INEQUALITIES FOR EIGENVALUES OF A SYSTEM OF HIGHER-ORDER . . . 395 There have been some results for some eigenvalues problems of systems of equations. Mokeichev [8] derive some expressions for eigenvalues of a system of equations in Hilbert space. Kostenko [5] investigated the spectrum of a system of second-order differential equations. In 2011, Jia, Huang and Liu [4] established the following inequalities for eigenvalues of problem (1.1): k∑ r=1 λ 1/l r λk+1 − λr ≥ ςτ2k2 4l(2l − 1)ζσ2 ( k∑ r=1 λ1−1/l r )−1 (1.5) and λk+1 ≤ [ 1 + 4l(2l − 1)ζσ2 ςτ2 ] λk. (1.6) The goal of this paper is to give some sharper estimates for eigenvalues of problem (1.1). We first establish the following inequality. Theorem 1.1. Let λr be the rth eigenvalue of problem (1.1). Suppose that the coefficients aij(x), i, j = 1, 2, . . . , n, and the weight function ρ(x) satisfy (1.2), (1.3) and (1.4). Then we have k∑ r=1 (λk+1 − λr)2 ≤ 4l(2l − 1)ζσ2 ςτ2 k∑ r=1 (λk+1 − λr)λr. (1.7) Furthermore, making a modification in the proof of Theorem 1.1, we can obtain another inequal- ity. Theorem 1.2. Under the same assumptions as Theorem 1.1, we have k∑ r=1 (λk+1 − λr)2 ≤ ≤ 2 [ l(2l − 1)ζσ2 ςτ2 ]1/2[ k∑ r=1 (λk+1 − λr)λ1/lr ]1/2[ k∑ r=1 (λk+1 − λr)2λ1−1/l r ]1/2 . (1.8) Remark 1.1. When l = 1, (1.7) and (1.8) all become k∑ r=1 (λk+1 − λr)2 ≤ 4ζσ2 ςτ2 k∑ r=1 (λk+1 − λr)λr. When l ≥ 2, inequality (1.7) is better than (1.8). In fact, inequality (1.7) is always Yang-type (see [1, 9, 10]) for any l. Using Chebyshev’s inequality, it is not difficult to get (1.5) from (1.8). That is to say, (1.8) and (1.7) is sharper than (1.5). Using (1.7), we can derive some explicit estimates for upper bounds of eigenvalues and gaps of consecutive eigenvalues. In fact, noting that (1.7) is a quadratic inequality of λk+1, we can obtain the following two corollaries. Corollary 1.1. Under the same assumptions of Theorem 1.1, we have λk+1 ≤ [ 1 + 2l(2l − 1)ζσ2 ςτ2 ] 1 k k∑ r=1 λr+ ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 3 396 H.-J. SUN + {[ 2l(2l − 1)ζσ2 ςτ2 1 k k∑ r=1 λr ]2 − [ 1 + 4l(2l − 1)ζσ2 ςτ2 ] 1 k k∑ s=1 (λs − 1 k k∑ r=1 λr) 2 }1/2 . (1.9) Using the Cauchy – Schwarz inequality, we can get the following inequality from (1.9). Corollary 1.2. Under the same assumptions of Theorem 1.1, we have λk+1 ≤ [ 1 + 4l(2l − 1)ζσ2 ςτ2 ] 1 k k∑ r=1 λr. (1.10) Remark 1.2. Inequalities (1.9) and (1.10) give some estimates for upper bounds of λk+1 in terms of the first k eigenvalues of problem (1.1). Moreover, it is easy to find that (1.10) implies (1.6). At the same time, an explicit estimate for the gaps of any two consecutive eigenvalues of problem (1.1) can be obtained from (1.9). Corollary 1.3. Under the same assumptions of Theorem 1.1, we have λk+1 − λk ≤ 2 {[ 2l(2l − 1)ζσ2 ςτ2 1 k k∑ r=1 λr ]2 − − [ 1 + 4l(2l − 1)ζσ2 ςτ2 ] 1 k k∑ s=1 (λs − 1 k k∑ r=1 λr) 2 }1/2 . (1.11) 2. Proofs of the main results. Let u = u1(x) ... un(x)  , Dlu = D lu1(x) ... Dlun(x)  , A(x) = a11(x) . . . a1n(x) . . . . . . . . . an1(x) . . . ann(x)  . Then we can rewrite problem (1.1) as the following simpler form: (−1)lDl ( A(x)Dlu ) = λρu, on [a, b], Dtu(a) = Dtu(b) = 0, for t = 0, 1, . . . , l − 1. (2.1) In order to prove the main theorems, we first establish a general inequality for eigenvalues of problem (2.1). Lemma 2.1. Let ur = ( ur1(x), ur2(x), . . . , urn(x) )T be the weighted orthonormal eigenvector corresponding to the rth eigenvalue λr of problem (1.1) for r = 1, 2, . . . , k. Then we have k∑ r=1 (λk+1 − λr)2 b∫ a |ur|2dx ≤ ≤ k∑ r=1 δr(λk+1 − λr)2ωr + k∑ r=1 1 δr (λk+1 − λr) b∫ a 1 ρ |Dur|2dx, (2.2) where the positive constants δr, r = 1, . . . , k, . . . , construct a nonincreasing sequence and ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 3 INEQUALITIES FOR EIGENVALUES OF A SYSTEM OF HIGHER-ORDER . . . 397 ωr = l2 b∫ a Dl−1uT r A(x)Dl−1urdx− l(l − 1) b∫ a DluT r A(x)Dl−2urdx. Proof. According to (2.1) and the assumptions of Lemma 1, the weighted orthonormal eigen- vector ur satisfies (−1)lDl ( A(x)Dlur ) = λrρur, Dtur(a) = Dtur(b) = 0, b∫ a ρuT r usdx = δrs, (2.3) for r, s = 1, . . . , k and t = 0, 1, . . . , l − 1. We define the trial vectors Φr by Φr = xur − k∑ s=1 brsus, (2.4) where brs = b∫ a ρxuT r usdx = bsr. (2.5) Then we know that Φr is weighted orthogonal with us. That is to say b∫ a ρΦT r usdx = 0, for r, s = 1, . . . , k. (2.6) It yields b∫ a ρΦT r xurdx = b∫ a ρ|Φr|2dx. (2.7) Since Dl [ aij(x)Dl ( xurj(x) )] = = lDl ( aij(x)Dl−1urj(x) ) +Dl ( aij(x)xDlurj(x) ) = = lDl ( aij(x)Dl−1urj(x) ) + lDl−1 ( aij(x)Dlurj(x) ) + xDl ( aij(x)Dlurj(x) ) , we can deduce Dl ( A(x)DlΦr ) = Dl [ A(x)Dl(xur) ] − k∑ s=1 brsD l ( A(x)Dlus ) = ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 3 398 H.-J. SUN = lDl ( A(x)Dl−1ur ) + lDl−1 ( A(x)Dlur ) + xDl ( A(x)Dlur ) − − k∑ s=1 brsD l ( A(x)Dlus ) = = lDl ( A(x)Dl−1ur ) + lDl−1 ( A(x)Dlur ) + (−1)lλrρxur − (−1)l k∑ s=1 brsλsρus. (2.8) Using (2.6), (2.7), and (2.8), we have b∫ a ΦT r D l ( A(x)DlΦr ) dx = = b∫ a ΦT r [ Dl ( A(x)Dl−1ur ) +Dl−1 ( A(x)Dlur )] dx+ (−1)lλr b∫ a ρ|Φr|2dx. (2.9) Substituting (2.9) into the Rayleigh – Ritz inequality λk+1 ≤ (−1)l ∫ b a ΦT r D l ( A(x)DlΦr ) dx∫ b a ρ|Φr|2dx , we obtain (λk+1 − λr) b∫ a ρΦ2 rdx ≤ ≤ (−1)ll b∫ a ΦT r [ Dl ( A(x)Dl−1ur ) +Dl−1 ( A(x)Dlur )] dx = = (−1)ll b∫ a xuT r [ Dl ( A(x)Dl−1ur ) +Dl−1 ( A(x)Dlur )] dx+ k∑ s=1 brscrs, (2.10) where crs = (−1)l+1l b∫ a uT s [ Dl ( A(x)Dl−1ur ) +Dl−1 ( A(x)Dlur )] dx. It is easy to find that crs = −csr. Using integration by parts and making use of (2.3), we have λrbrs = b∫ a xuT s [ (−1)lDl ( A(x)Dlur )] dx = (−1)l b∫ a uT r D l [ A(x)Dl ( xus )] dx = ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 3 INEQUALITIES FOR EIGENVALUES OF A SYSTEM OF HIGHER-ORDER . . . 399 = (−1)ll b∫ a uT r [ Dl ( A(x)Dl−1us ) +Dl−1 ( A(x)Dlus )] dx+ +(−1)l b∫ a xuT r D l ( A(x)Dlus ) dx = λsbrs − csr. It yields crs = (λr − λs)brs. (2.11) At the same time, we get (−1)ll b∫ a xuT r [ Dl ( A(x)Dl−1ur ) +Dl−1 ( A(x)Dlur )] dx = = l b∫ a Dl−1uT r A(x)Dl ( xur ) dx− l b∫ a DluT r A(x)Dl−1 ( xur ) dx = = l2 b∫ a Dl−1uT r A(x)Dl−1urdx+ l b∫ a xDl−1uT r A(x)Dlurdx− −l(l − 1) b∫ a DluT r A(x)Dl−2urdx− l b∫ a xDluT r A(x)Dl−1urdx = ωr, (2.12) where ωr = l2 b∫ a Dl−1uT r A(x)Dl−1urdx− l(l − 1) b∫ a DluT r A(x)Dl−2urdx. Substituting (2.11) and (2.12) into (2.10), we derive (λk+1 − λr) b∫ a ρ|Φr|2dx ≤ ωr + k∑ s=1 (λr − λs)b2rs. (2.13) It is not hard to find b∫ a xuT r Durdx = −1 2 b∫ a |ur|2dx. (2.14) Hence, using integration by parts again, we obtain ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 3 400 H.-J. SUN −2 b∫ a ΦT r Durdx = −2 b∫ a xuT r Durdx+ 2 k∑ s=1 brsdrs = b∫ a |ur|2dx+ 2 k∑ s=1 brsdrs, (2.15) where drs = b∫ a uT sDurdx = −dsr. On the other hand, we have −2(λk+1 − λr)2 b∫ a ΦT r Durdx = = −2(λk+1 − λr)2 b∫ a √ ρΦT r ( 1 √ ρ Dur − √ ρ k∑ s=1 drsus ) dx ≤ ≤ δr(λk+1 − λr)3 b∫ a ρ|Φr|2dx+ λk+1 − λr δr b∫ a ( 1 √ ρ Dur − √ ρ k∑ s=1 drsus )2 dx = = λk+1 − λr δr  b∫ a 1 ρ |Dur|2dx− 2 k∑ s=1 drs b∫ a uT sDurdx+ k∑ s,q=1 drsdrq b∫ a ρuT s uqdx + +δr(λk+1 − λr)3 b∫ a ρ|Φr|2dx = = δr(λk+1 − λr)3 b∫ a ρ|Φr|2dx+ λk+1 − λr δr  b∫ a 1 ρ |Dur|2dx− k∑ s=1 d2rs  . (2.16) Substituting (2.13) into (2.16), we obtain −2(λk+1 − λr)2 b∫ a ΦT r Durdx ≤ ≤ δr(λk+1 − λr)2 [ ωr + k∑ s=1 (λr − λs)b2rs ] + λk+1 − λr δr  b∫ a 1 ρ |Dur|2dx− k∑ s=1 d2rs  . (2.17) Combining (2.15) and (2.17), and taking sum on r from 1 to k, we derive k∑ r=1 (λk+1 − λr)2 b∫ a |ur|2dx+ 2 k∑ r,s=1 (λk+1 − λr)2brsdrs ≤ ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 3 INEQUALITIES FOR EIGENVALUES OF A SYSTEM OF HIGHER-ORDER . . . 401 ≤ k∑ r=1 δr(λk+1 − λr)2ωr + k∑ r,s=1 δr(λk+1 − λr)2(λr − λs)b2rs+ + k∑ r=1 1 δr (λk+1 − λr) b∫ a 1 ρ |Dur|2dx− k∑ r,s=1 1 δr (λk+1 − λr)d2rs. (2.18) Since the sequence {δr} is nonincreasing, one can get k∑ r,s=1 δr(λk+1 − λr)2(λr − λs)b2rs ≤ − k∑ r,s=1 δr(λk+1 − λr)(λr − λs)2b2rs. (2.19) Then we can eliminate the unwanted terms in both sides of (2.18) by using (2.19) and k∑ r,s=1 (λk+1 − λr)2brsdrs = − k∑ r,s=1 (λk+1 − λr)(λr − λs)brsdrs. Thereby, (2.2) is true. Lemma 2.1 is proved. Now we give the proof of Theorem 1.1. Proof of Thereom 1.1. It is not hard to find 0 < τ ≤ b∫ a |ur|2dx = b∫ a 1 ρ ρ|ur|2dx ≤ σ. (2.20) By virtue of (1.2), we have λr = b∫ a uT r [ (−1)lDl ( A(x)Dlur )] dx = b∫ a DluT r A(x)Dlurdx = = b∫ a n∑ i,j=1 aij(x)Dluri(x)Dlurj(x)dx ≥ ς b∫ a |Dlur|2dx. It yields b∫ a |Dlur|2dx ≤ 1 ς λr. (2.21) Using (2.21) and the following inequality (see Lemma 2.1 of [4]) b∫ a |Dtur|2dx ≤ σ1−t/l ( λr ς )t/l , ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 3 402 H.-J. SUN we can deduce b∫ a 1 ρ |Dur|2dx ≤ σ2−1/l ( λr ς )1/l , (2.22) b∫ a Dl−1uT r A(x)Dl−1urdx ≤ ζ b∫ a |Dl−1ur|2dx ≤ ζσ1/l ( λr ς )1−1/l (2.23) and − b∫ a DluT r A(x)Dl−2urdx ≤ ζ  b∫ a |Dl−2ur|2dx 1/2 b∫ a |Dlur|2dx 1/2 ≤ ≤ ζσ1/l ( λr ς )1−1/l . (2.24) Using (2.23) and (2.24), we obtain ωr = l2 b∫ a Dl−1uT r A(x)Dl−1urdx− l(l − 1) b∫ a DluT r A(x)Dl−2urdx ≤ ≤ l(2l − 1)ζσ1/l ( λr ς )1−1/l . (2.25) Therefore, substituting (2.20), (2.22), and (2.25) into (2.2), we get τ k∑ r=1 (λk+1 − λr)2 ≤ ≤ l(2l − 1)ζσ1/l k∑ r=1 δr(λk+1 − λr)2 ( λr ς )1−1/l + σ2−1/l k∑ r=1 1 δr (λk+1 − λr) ( λr ς )1/l . (2.26) Putting δr = δ l(2l − 1)ζσ1/lλ 1−1/l r ς−1+1/l in (2.26), we have τ k∑ r=1 (λk+1 − λr)2 ≤ δ k∑ r=1 (λk+1 − λr)2 + 1 δ l(2l − 1)ζσ2ς−1 k∑ r=1 (λk+1 − λr)λr. (2.27) Then, putting δ = [ l(2l − 1)ζ ]1/2 σς−1/2 [ k∑ r=1 (λk+1 − λr)λr ]1/2 [ k∑ r=1 (λk+1 − λr)2 ]−1/2 in (2.27), we obtain ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 3 INEQUALITIES FOR EIGENVALUES OF A SYSTEM OF HIGHER-ORDER . . . 403 τ k∑ r=1 (λk+1 − λr)2 ≤ 2 [ l(2l − 1)ζ ]1/2 σς−1/2 [ k∑ r=1 (λk+1 − λr)2 k∑ r=1 (λk+1 − λr)λr ]1/2 . (2.28) This yields (1.7). Theorem 1.1 is proved. Proof of Thereom 1.2. Since the sequence {δr} is nonincreasing, we can obtain τ k∑ r=1 (λk+1 − λr)2 ≤ ≤ l(2l − 1)ζσ1/lδ k∑ r=1 (λk+1 − λr)2 ( λr ς )1−1/l + σ2−1/l 1 δ k∑ r=1 (λk+1 − λr) ( λr ς )1/l (2.29) by taking δr = δ in (2.26) for r = 1, . . . , k. Putting δ = [ l(2l − 1)ζ ]−1/2 σ1−1/lς1/2−1/l [ k∑ r=1 (λk+1 − λr)λ1/lr ]1/2 [ k∑ r=1 (λk+1 − λr)2λ1−1/l r ]−1/2 in (2.29), we can derive (1.8). Theorem 1.2 is proved. 1. Cheng Q.-M., Yang H. C. Bounds on eigenvalues of Dirichlet Laplacian // Math. Ann. – 2007. – 337, № 1. – P. 159 – 175. 2. Courant R., Hilbert D. Methods of mathematical physics.. – New York: Intersci. Publ., 1989. 3. Henrot A. Extremun problems for eigenvalues of elliptic operators.. – Basel: Birkhäuser, 2006. 4. Jia G., Huang L. N., Liu W. On the upper bounds of eigenvalues for a class of systems of ordinary differential equations with high orders // Int. J. Different. Equat. – 2011. – doi:10.1155/2011/712703. 5. Kostenko N. M. On the spectrum of a system of differential equations // Ukr. Math. J. – 1970. – 22, № 2. – P. 139 – 147. 6. Ljung L. Recursive identification // Stochastic Systems: The Mathematics of Filtering and Identification and Applications / Eds M. Hazewinkel and J. C. Willems. Reidel, 1981. – P. 247 – 283. 7. Maybeck P. S. Stochastic models, estimation, and control, III. – New York: Acad. Press, 1982. 8. Mokeichev V. S. Eigenvalues of a system of equations in a Hilbert space // J. Math. Sci. – 1976. – 42, № 3. – P. 1696 – 1703. 9. Sun H.-J. Yang-type inequalities for weighted eigenvalues of a second-order uniformly elliptic operator with a nonnegative potential // Proc. Amer. Math. Soc. – 2010. – 138, № 8. – P. 2827 – 2838. 10. Yang H. C. An estimate of the difference between consecutive eigenvalues. – Preprint IC/91/60, Trieste, 1991. Received 22.11.11 ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 3