Infinitely many fast homoclinic solutions for some second-order nonautonomous systems

We investigate the existence of infinitely many fast homoclinic solutions for a class of second-order nonautonomous systems. Our main tools are based on the variant fountain theorem. A criterion guaranteeing that the second-order system has infinitely many fast homoclinic solutions is obtained. Rece...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Український математичний журнал
Дата:2014
Автори: Yang, Liu, Luo, Liping, Luo, Zhenguo
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2014
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/165985
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Infinitely many fast homoclinic solutions for some second-order nonautonomous systems / Liu Yang, Liping Luo, Zhenguo Luo // Український математичний журнал. — 2014. — Т. 66, № 3. — С. 404–414. — Бібліогр.: 16 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We investigate the existence of infinitely many fast homoclinic solutions for a class of second-order nonautonomous systems. Our main tools are based on the variant fountain theorem. A criterion guaranteeing that the second-order system has infinitely many fast homoclinic solutions is obtained. Recent results from the literature are generalized and significantly improved. Досліджєно існування нескінченної кількості швидких гомоклінічних розв'язків для класу неавтономних систем другого порядку. Наш основний метод базується на модифікації теореми про фонтан. Отримано критерій, що гарантує наявність нескінченної кількості швидких гомоклінічних розв'язків системи другого порядку. Узагальнено та значно покращено нещодавно опубліковані результати.
ISSN:1027-3190