Мішані задачі для двовимірного рівняння теплопровідності в анізотропних просторах Хермандера
Для некоторых анизотропных пространств Хермандера установлены теоремы о корректной разрешимости начально-краевых задач для двумерного уравнения теплопроводности с краевыми условиями Дирихле и Неймана. Регулярность функций, образующих эти пространства, характеризуется парой числовых параметров и функ...
Saved in:
| Published in: | Український математичний журнал |
|---|---|
| Date: | 2015 |
| Main Author: | |
| Format: | Article |
| Language: | Ukrainian |
| Published: |
Інститут математики НАН України
2015
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/165997 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Мішані задачі для двовимірного рівняння теплопровідності в анізотропних просторах Хермандера / В.М. Лось // Український математичний журнал. — 2015. — Т. 67, № 5. — С. 645–656. — Бібліогр.: 30 назв. — укр. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | Для некоторых анизотропных пространств Хермандера установлены теоремы о корректной разрешимости начально-краевых задач для двумерного уравнения теплопроводности с краевыми условиями Дирихле и Неймана. Регулярность функций, образующих эти пространства, характеризуется парой числовых параметров и функциональным параметром, медленно меняющимся на бесконечности по Карамата. Последний, по сравнению с соболевской шкалой, позволяет более тонко охарактеризовать регулярность функций.
For some anisotropic inner-product Hörmander spaces, we prove the theorems on well-posedness of initial-boundary-value problems for the two-dimensional heat-conduction equation with Dirichlet or Neumann boundary conditions. The regularity of the functions from these spaces is characterized by a couple of numerical parameters and a function parameter regularly varying at infinity in Karamata’s sense and characterizing the regularity of functions more precisely than in the Sobolev scale.
|
|---|---|
| ISSN: | 1027-3190 |