Remainders of semitopological groups or paratopological groups
We mainly discuss the remainders of Hausdorff compactifications of paratopological groups or semitopological groups. Thus, we show that if a nonlocally compact semitopological group G has a compactification bG such that the remainder Y = bG \ G possesses a locally countable network, then G has a cou...
Збережено в:
| Опубліковано в: : | Український математичний журнал |
|---|---|
| Дата: | 2014 |
| Автори: | , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2014
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/165999 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Remainders of semitopological groups or paratopological groups / Fucai Lin, Chuan Liu, Li-Hong Xie // Український математичний журнал. — 2014. — Т. 66, № 4. — С. 500–509. — Бібліогр.: 26 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-165999 |
|---|---|
| record_format |
dspace |
| spelling |
Lin, Fucai Liu, Chuan Xie, Li-Hong 2020-02-17T19:25:33Z 2020-02-17T19:25:33Z 2014 Remainders of semitopological groups or paratopological groups / Fucai Lin, Chuan Liu, Li-Hong Xie // Український математичний журнал. — 2014. — Т. 66, № 4. — С. 500–509. — Бібліогр.: 26 назв. — англ. 1027-3190 https://nasplib.isofts.kiev.ua/handle/123456789/165999 512.5 We mainly discuss the remainders of Hausdorff compactifications of paratopological groups or semitopological groups. Thus, we show that if a nonlocally compact semitopological group G has a compactification bG such that the remainder Y = bG \ G possesses a locally countable network, then G has a countable π -character and is also first-countable, that if G is a nonlocally compact semitopological group with locally metrizable remainder, then G and bG are separable and metrizable, that if a nonlocally compact paratopological group has a remainder with sharp base, then G and bG are separable and metrizable, and that if a nonlocally compact ℝ1-factorizable paratopological group has a remainder which is a k -semistratifiable space, then G and bG are separable and metrizable. These results improve some results obtained by C. Liu (Topology Appl., 159, 1415–1420 (2012)) and A.V. Arhangel’skїǐ and M. M. Choban (Topology Proc., 37, 33–60 (2011)). Moreover, some open questions are formulated. У даній статті, в основному, розглядаються залишковi члени хаусдорфових компактифiкацiй паратопологічних груп або напівтопологічних груп. Tак, показано, що у випадку, коли нелокально компактна напівтопологічна група G має компактифікацію bG таку, що залишковий член Y=bG∖G має локально злічєнну мережу, група G має злічєнний π-характер, а також є першозліченною. Також доведено, що для нелокально компактної напівтопологічної групи з локально метризовним залишковим членом групи G i bG є сепарабельними i метризовними. Крім того, якщо нелокально компактна паратопологічна група має залишковий член з точною базою, то групи G i bG є сепарабельними і метризовними, а якщо нелокально компактна R1 -факторизовна паратопологічна група має залишковий член, який є простором, що допускає k-напівспрямлення, то групи G i bG є також сепарабельними i метризовними. Наведені результати покращують деякі результати, отримані C. Liu (Topology and Appl. - 2012. - 159. - P. 1415-1420) i A. V. Arhangel'skii, M. M. Choban (Topology Proc. - 2011. - 37. - P. 33 - 60). Крім того, сформульовано деякі відкриті питання. Supported by the NSFC (No. 11201414), the Natural Science Foundation of Fujian Province (No. 2012J05013) of China and Training Programme Foundation for Excellent Youth Researching Talents of Fujian’s Universities (JA13190). en Інститут математики НАН України Український математичний журнал Статті Remainders of semitopological groups or paratopological groups Залишкові члени напівтопологічних груп або паратопологічних груп Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Remainders of semitopological groups or paratopological groups |
| spellingShingle |
Remainders of semitopological groups or paratopological groups Lin, Fucai Liu, Chuan Xie, Li-Hong Статті |
| title_short |
Remainders of semitopological groups or paratopological groups |
| title_full |
Remainders of semitopological groups or paratopological groups |
| title_fullStr |
Remainders of semitopological groups or paratopological groups |
| title_full_unstemmed |
Remainders of semitopological groups or paratopological groups |
| title_sort |
remainders of semitopological groups or paratopological groups |
| author |
Lin, Fucai Liu, Chuan Xie, Li-Hong |
| author_facet |
Lin, Fucai Liu, Chuan Xie, Li-Hong |
| topic |
Статті |
| topic_facet |
Статті |
| publishDate |
2014 |
| language |
English |
| container_title |
Український математичний журнал |
| publisher |
Інститут математики НАН України |
| format |
Article |
| title_alt |
Залишкові члени напівтопологічних груп або паратопологічних груп |
| description |
We mainly discuss the remainders of Hausdorff compactifications of paratopological groups or semitopological groups. Thus, we show that if a nonlocally compact semitopological group G has a compactification bG such that the remainder Y = bG \ G possesses a locally countable network, then G has a countable π -character and is also first-countable, that if G is a nonlocally compact semitopological group with locally metrizable remainder, then G and bG are separable and metrizable, that if a nonlocally compact paratopological group has a remainder with sharp base, then G and bG are separable and metrizable, and that if a nonlocally compact ℝ1-factorizable paratopological group has a remainder which is a k -semistratifiable space, then G and bG are separable and metrizable. These results improve some results obtained by C. Liu (Topology Appl., 159, 1415–1420 (2012)) and A.V. Arhangel’skїǐ and M. M. Choban (Topology Proc., 37, 33–60 (2011)). Moreover, some open questions are formulated.
У даній статті, в основному, розглядаються залишковi члени хаусдорфових компактифiкацiй паратопологічних груп або напівтопологічних груп. Tак, показано, що у випадку, коли нелокально компактна напівтопологічна група G має компактифікацію bG таку, що залишковий член Y=bG∖G має локально злічєнну мережу, група G має злічєнний π-характер, а також є першозліченною. Також доведено, що для нелокально компактної напівтопологічної групи з локально метризовним залишковим членом групи G i bG є сепарабельними i метризовними. Крім того, якщо нелокально компактна паратопологічна група має залишковий член з точною базою, то групи G i bG є сепарабельними і метризовними, а якщо нелокально компактна R1 -факторизовна паратопологічна група має залишковий член, який є простором, що допускає k-напівспрямлення, то групи G i bG є також сепарабельними i метризовними. Наведені результати покращують деякі результати, отримані C. Liu (Topology and Appl. - 2012. - 159. - P. 1415-1420) i A. V. Arhangel'skii, M. M. Choban (Topology Proc. - 2011. - 37. - P. 33 - 60). Крім того, сформульовано деякі відкриті питання.
|
| issn |
1027-3190 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/165999 |
| citation_txt |
Remainders of semitopological groups or paratopological groups / Fucai Lin, Chuan Liu, Li-Hong Xie // Український математичний журнал. — 2014. — Т. 66, № 4. — С. 500–509. — Бібліогр.: 26 назв. — англ. |
| work_keys_str_mv |
AT linfucai remaindersofsemitopologicalgroupsorparatopologicalgroups AT liuchuan remaindersofsemitopologicalgroupsorparatopologicalgroups AT xielihong remaindersofsemitopologicalgroupsorparatopologicalgroups AT linfucai zališkovíčleninapívtopologíčnihgrupaboparatopologíčnihgrup AT liuchuan zališkovíčleninapívtopologíčnihgrupaboparatopologíčnihgrup AT xielihong zališkovíčleninapívtopologíčnihgrupaboparatopologíčnihgrup |
| first_indexed |
2025-12-07T16:03:40Z |
| last_indexed |
2025-12-07T16:03:40Z |
| _version_ |
1850866056270184448 |