Резонансные эллиптические вариационные неравенства с разрывными нелинейностями линейного роста

Розглядаються резонанснi елiптичнi варiацiйнi нерiвностi з диференцiальними операторами другого порядку i розривною нелiйнiстю лiнiйного зростання. Доведено теорему iснування сильного розв’язку. Початкову задачу зведено до проблеми iснування нерухомої точки у багатозначного компактного вiдображення,...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Український математичний журнал
Дата:2011
Автор: Павленко, В.Н.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут математики НАН України 2011
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/166027
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Резонансные эллиптические вариационные неравенства с разрывными нелинейностями линейного роста / В.Н. Павленко // Український математичний журнал. — 2011. — Т. 63, № 4. — С. 513–522. — Бібліогр.: 13 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Розглядаються резонанснi елiптичнi варiацiйнi нерiвностi з диференцiальними операторами другого порядку i розривною нелiйнiстю лiнiйного зростання. Доведено теорему iснування сильного розв’язку. Початкову задачу зведено до проблеми iснування нерухомої точки у багатозначного компактного вiдображення, а потiм методом Лере–Шаудера встановлено наявнiсть нерухомої точки. We consider resonance elliptic variational inequalities with second-order differential operators and discontinuous nonlinearity of linear grows. The theorem on the existence of a strong solution is obtained. The initial problem is reduced to the problem of the existence of a fixed point in a compact multivalued mapping and then, with the use of the Leray - Schauder method, the existence of the fixed point is established.
ISSN:1027-3190