Finite-dimensional subalgebras in polynomial Lie algebras of rank one

Let Wn(K) be the Lie algebra of derivations of the polynomial algebra K[X] := K[x1, . . . , xn] over an algebraically closed field K of characteristic zero. A subalgebra L ⊆ Wn(K) is called polynomial if it is a submodule of the K[X]-module Wn(K). We prove that the centralizer of every nonzero ele...

Full description

Saved in:
Bibliographic Details
Published in:Український математичний журнал
Date:2011
Main Authors: Arzhantsev, I.V., Makedonskii, E.A., Petravchuk, A.P.
Format: Article
Language:English
Published: Інститут математики НАН України 2011
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/166045
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Finite-dimensional subalgebras in polynomial Lie algebras of rank one / I.V. Arzhantsev, E.A. Makedonskii, A.P. Petravchuk // Український математичний журнал. — 2011. — Т. 63, № 5. — С. 708–712. — Бібліогр.: 6 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine