Дефектные значения решений дифференциальных уравнений c точкой ветвления
Вивчається розподіл значень розв'язків алгебраїчного диференціального рівняння P(z,f,f',...,f(s))=0, коефіцієнти i розв'язки якого мають точку розгалуження в нескінченності (наприклад, логарифмічну особливу точку). Показано, що якщо a∈C (a — дефектне значення розв'язку f цього рі...
Gespeichert in:
| Veröffentlicht in: | Український математичний журнал |
|---|---|
| Datum: | 2014 |
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | Russian |
| Veröffentlicht: |
Інститут математики НАН України
2014
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/166053 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Дефектные значения решений дифференциальных уравнений c точкой ветвления / А.А. Мохонько, А.З. Мохонько // Український математичний журнал. — 2014. — Т. 66, № 7. — С. 939–957. — Бібліогр.: 12 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | Вивчається розподіл значень розв'язків алгебраїчного диференціального рівняння P(z,f,f',...,f(s))=0, коефіцієнти i розв'язки якого мають точку розгалуження в нескінченності (наприклад, логарифмічну особливу точку). Показано, що якщо a∈C (a — дефектне значення розв'язку f цього рівняння) i f зростає швидше за коефіцієнти, то справджується тотожність P(z,a,0,...,0)≡0,z∈{z:r0≤|z|<∞}. Якщо P(z,а,0,...,0) не перетворюється тотожно в нуль за сукупністю змінних z і a, то лише скінченне число значень а може бути дефектним значенням для розв'язків f∈Mb скінченного порядку.
We study the distribution of values of the solutions of an algebraic differential equation P(z, f, f′, . . . , f (s)) = 0 with the property that its coefficients and solutions have a branching point at infinity (e.g., a logarithmic singularity). It is proved that if a ∈ ℂ is a deficiency value of f and f grows faster than the coefficients, then the following identity takes place: P(z, a, 0, . . . , 0) ≡ 0, z ∈ {z : r 0 ≤ |z| < ∞}. If P(z, a, 0, . . . , 0) is not identically equal to zero in the collection of variables z and a, then only finitely many values of a can be deficiency values for the solutions f ∈ M b with finite order of growth
|
|---|---|
| ISSN: | 1027-3190 |