Anisotropic differential operators with parameters and applications

In the paper, we study the boundary-value problems for parameter-dependent anisotropic differential-operator equations with variable coefficients. Several conditions for the uniform separability and Fredholmness in Banach-valued L p -spaces are given. Sharp uniform estimates for the resolvent are es...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Український математичний журнал
Datum:2014
1. Verfasser: Shakhmurov, V.B.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2014
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/166056
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Anisotropic differential operators with parameters and applications / V.B. Shakhmurov // Український математичний журнал. — 2014. — Т. 66, № 7. — С. 983–1002. — Бібліогр.: 29 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-166056
record_format dspace
spelling Shakhmurov, V.B.
2020-02-18T05:03:22Z
2020-02-18T05:03:22Z
2014
Anisotropic differential operators with parameters and applications / V.B. Shakhmurov // Український математичний журнал. — 2014. — Т. 66, № 7. — С. 983–1002. — Бібліогр.: 29 назв. — англ.
1027-3190
https://nasplib.isofts.kiev.ua/handle/123456789/166056
517.9
In the paper, we study the boundary-value problems for parameter-dependent anisotropic differential-operator equations with variable coefficients. Several conditions for the uniform separability and Fredholmness in Banach-valued L p -spaces are given. Sharp uniform estimates for the resolvent are established. It follows from these estimates that the indicated operator is uniformly positive. Moreover, it is also the generator of an analytic semigroup. As an application, the maximal regularity properties of the parameter-dependent abstract parabolic problem and infinite systems of parabolic equations are established in mixed L p -spaces.
Вивчаються граничні задачi для анізотропних диференціально-операторних рівнянь зі змінними коефiцiєнтами, що залежать від параметрів. Наведено кілька умов рівномірної сепарабельності та фредгольмовості в банаховозначних L p -просторах. Встановлено точні рівномірні оцінки для резольвенти, з яких випливає, що вказаний оператор є рівномірно додатним. Більш того, він є також генератором деякої аналітичної напівгрупи. Як застосування, встановлено властивості максимальної регулярності абстрактної параболічної задачі, що залежить від параметра, та нескінченних систем рівнянь параболічного типу в L p -просторах.
en
Інститут математики НАН України
Український математичний журнал
Статті
Anisotropic differential operators with parameters and applications
Анізотропні диференціальні оператори з параметрами та їх застосування
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Anisotropic differential operators with parameters and applications
spellingShingle Anisotropic differential operators with parameters and applications
Shakhmurov, V.B.
Статті
title_short Anisotropic differential operators with parameters and applications
title_full Anisotropic differential operators with parameters and applications
title_fullStr Anisotropic differential operators with parameters and applications
title_full_unstemmed Anisotropic differential operators with parameters and applications
title_sort anisotropic differential operators with parameters and applications
author Shakhmurov, V.B.
author_facet Shakhmurov, V.B.
topic Статті
topic_facet Статті
publishDate 2014
language English
container_title Український математичний журнал
publisher Інститут математики НАН України
format Article
title_alt Анізотропні диференціальні оператори з параметрами та їх застосування
description In the paper, we study the boundary-value problems for parameter-dependent anisotropic differential-operator equations with variable coefficients. Several conditions for the uniform separability and Fredholmness in Banach-valued L p -spaces are given. Sharp uniform estimates for the resolvent are established. It follows from these estimates that the indicated operator is uniformly positive. Moreover, it is also the generator of an analytic semigroup. As an application, the maximal regularity properties of the parameter-dependent abstract parabolic problem and infinite systems of parabolic equations are established in mixed L p -spaces. Вивчаються граничні задачi для анізотропних диференціально-операторних рівнянь зі змінними коефiцiєнтами, що залежать від параметрів. Наведено кілька умов рівномірної сепарабельності та фредгольмовості в банаховозначних L p -просторах. Встановлено точні рівномірні оцінки для резольвенти, з яких випливає, що вказаний оператор є рівномірно додатним. Більш того, він є також генератором деякої аналітичної напівгрупи. Як застосування, встановлено властивості максимальної регулярності абстрактної параболічної задачі, що залежить від параметра, та нескінченних систем рівнянь параболічного типу в L p -просторах.
issn 1027-3190
url https://nasplib.isofts.kiev.ua/handle/123456789/166056
citation_txt Anisotropic differential operators with parameters and applications / V.B. Shakhmurov // Український математичний журнал. — 2014. — Т. 66, № 7. — С. 983–1002. — Бібліогр.: 29 назв. — англ.
work_keys_str_mv AT shakhmurovvb anisotropicdifferentialoperatorswithparametersandapplications
AT shakhmurovvb anízotropnídiferencíalʹníoperatorizparametramitaíhzastosuvannâ
first_indexed 2025-11-25T22:29:25Z
last_indexed 2025-11-25T22:29:25Z
_version_ 1850563715080912896
fulltext UDC 517.9 V. B. Shakhmurov (Okan Univ., Istanbul, Turkey; Inst. Math. and Mech., Azerbaijan Nat. Acad. Sci.) ANISOTROPIC DIFFERENTIAL OPERATORS WITH PARAMETERS AND APPLICATIONS АНIЗОТРОПНI ДИФЕРЕНЦIАЛЬНI ОПЕРАТОРИ З ПАРАМЕТРАМИ ТА ЇХ ЗАСТОСУВАННЯ In this paper, we study the boundary-value problems for parameter-dependent anisotropic differential-operator equations with variable coefficients. Several conditions for the uniform separability and Fredholmness in Banach-valued Lp-spaces are given. Sharp uniform estimates for the resolvent are established. They imply that the indicated operator is uniformly positive. Moreover, it is also the generator of an analytic semigroup. As an application, the maximal regularity properties of the parameter-dependent abstract parabolic problem and infinite systems of parabolic equations are derived in mixed Lp-spaces. Вивчаються граничнi задачi для анiзотропних диференцiально-операторних рiвнянь зi змiнними коефiцiєнтами, що залежать вiд параметрiв. Наведено кiлька умов рiвномiрної сепарабельностi та фредгольмовостi в банаховозначних Lp-просторах. Встановлено точнi рiвномiрнi оцiнки для резольвенти, з яких випливає, що вказаний оператор є рiвномiрно додатним. Бiльш того, вiн є також генератором деякої аналiтичної напiвгрупи. Як застосування, встановлено властивостi максимальної регулярностi абстрактної параболiчної задачi, що залежить вiд параметра, та нескiнченних систем рiвнянь параболiчного типу в Lp-просторах. 1. Introduction and notations. It is well known that many classes of PDEs, pseudo-DEs and integro-DEs can be expressed as differential-operator equations (DOEs). DOEs have been studied extensively in the literature (see [1 – 5, 8 – 11, 13 – 24, 26 – 29] and the references therein). The main aim of the present paper is to discuss the uniform separability properties of BVPs for the following higher order parameter dependent anisotropic DOE: n∑ k=1 εkak (x) ∂lku ∂xlkk +A (x)u+ ∑ |α:l|<1 n∏ k=1 ε αk/lk k Aα (x)Dαu = f (x) , (1) where εk are small positive parameters, ak (x) are complex valued continuous functions, A (x) and Aα (x) are operator valued functions, defined for x ∈ Ω, where Ω is some region in Rn with the operators A(x) and Aα (x) , acting in a Banach space E, u (x) and f (x) respectively are a E valued unknown and date functions. The above DOE is a generalized form of the elliptic equation with parameters. In fact, the special case lk = 2m, k = 1, . . . , n, the equation (1) reduces to elliptic equation. Note, the principal part of the corresponding differential operator is non self-adjoint. Nevertheless, the sharp uniform coercive estimate for the resolvent and Fredholmness are established. Note that, maximal regularity properties for higher order anisotropic DOEs were studied, e.g., in [3, 5, 21, 23]. Unlike to these, in the present paper, the nonlocal BVP for parameter depended undegenerate anisotropic equation is studied and uniform separability properties is derived. In application, the maximal regularity properties of mixed problem for the following parabolic equation: ∂u ∂t + n∑ k=1 εkak (x) ∂lku ∂xlk +A (x)u = f (t, x) (2) c© V. B. SHAKHMUROV, 2014 ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 7 983 984 V. B. SHAKHMUROV are obtained. Particularly, the problem (2) occur in atmospheric dispersion of pollutants and evolution models for phytoremediation of metals from soils. Really, if E = R3, A (x) is a 3-dimensional functional matrices, i.e., A (x) = [aij (x)] , u = (u1, u2, u3) , i, j = 1, 2, 3, then we get the well posedeness of the IVP for the system of parabolic PDE with parameters ∂ui ∂t + n∑ k=1 (−1)lk εkak (x) ∂2lkui ∂x2lk + 3∑ j=1 aij (x)uj = fi (t, x) which arises in phytoremediation process. Let Lp (Ω;E) denote the space of all strongly measurable E-valued functions that are defined on the region Ω ⊂ Rn with the norm ‖f‖p = ‖f‖Lp(Ω;E) = (∫ ‖f (x)‖pE dx )1/p , 1 ≤ p <∞. The Banach space E is called a UMD-space if the Hilbert operator (Hf) (x) = = limε→0 ∫ |x−y|>ε f (y) x− y dy is bounded in Lp (R,E) , p ∈ (1,∞) (see., e.g., [6]). UMD-spaces include e.g. Lp-, lp-spaces and Lorentz spaces Lpq, p, q ∈ (1,∞) . Let C be the set of complex numbers and Sϕ = {λ;λ ∈ C, |arg λ| ≤ ϕ} ∪ {0} , 0 ≤ ϕ < π. Let E1 and E2 be two Banach spaces. B (E1, E2) denotes the space of bounded linear operators from E1 into E2 endowed with the usual uniform operator topology. For E1 = E2 it denotes by B (E) . Now (E1, E2)θ,p, 0 < θ < 1, 1 ≤ p ≤ ∞ will denote interpolation spaces defined by the K method [25] (§ 1.3.1). A linear operator A is said to be ϕ-positive in a Banach space E with bound M > 0 if D (A) is dense on E and ∥∥∥(A+ λI)−1 ∥∥∥ L(E) ≤M (1 + |λ|)−1 for all λ ∈ Sϕ, ϕ ∈ [0 , π) , I is an identity operator in E. Sometimes A + λI will be written as A + λ and denoted by Aλ. It is known [25] (§ 1.15.1) that there exists fractional powers Aθ of the positive operator A. Let E ( Aθ ) denote the space D ( Aθ ) endowed with graph norm ‖u‖E(Aθ) = ( ‖u‖p + ∥∥∥Aθu∥∥∥p)1/p , 1 ≤ p <∞, −∞ < θ <∞. A set W ⊂ B (E1, E2) is called R-bounded (see [6, 8, 26]) if there is a constant C > 0 such that for all T1, T2, . . . , Tm ∈W and u1,u2, . . . , um ∈ E1, m ∈ N 1∫ 0 ∥∥∥∥∥∥ m∑ j=1 rj (y)Tjuj ∥∥∥∥∥∥ E2 dy ≤ C 1∫ 0 ∥∥∥∥∥∥ m∑ j=1 rj (y)uj ∥∥∥∥∥∥ E1 dy, where {rj} is an arbitrary sequence of independent symmetric {−1, 1}-valued random variables on [0, 1] . ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 7 ANISOTROPIC DIFFERENTIAL OPERATORS WITH PARAMETERS AND APPLICATIONS 985 The smallest C for which the above estimate holds is called a R-bound of the collection W and is denoted by R (W ) . Let S (Rn;E) denote the Schwartz class, i.e., the space of all E-valued rapidly decreasing smooth functions on Rn equipped with its usual topology generated by seminorms. Let Ω be a domain in Rn. C (Ω;E) and C(m) (Ω;E) will denote the spaces of E-valued bounded uniformly strongly continuous and m-times continuously differentiable functions on Ω, respectively. Let F denotes the Fourier transformation. A function Ψ ∈ C (Rn;B (E)) is called a Fourier multiplier in Lp (Rn;E) if the map u→ Φu = F−1Ψ (ξ)Fu, u ∈ S (Rn;E) is well defined and extends to a bounded linear operator in Lp (Rn;E) . The set of all multipliers in Lp (Rn;E) will denoted by Mp p (E) . Let Un = {β = (β1, β2, . . . , βn) ∈ Nn : βk ∈ {0, 1}} . Definition 1. A Banach space E is said to be a space satisfying a multiplier condition if, for any Ψ ∈ C(n) (Rn;B (E)) the R-boundedness of the set { ξβDβ ξ Ψ (ξ) : ξ ∈ Rn\ {0} , β ∈ Un } implies that Ψ is a Fourier multiplier in Lp (Rn;E) , i.e., Ψ ∈ Mp p (E) for any p ∈ (1,∞) . Let Ψh ∈ Mp p (E) be a multiplier function dependent of the parameter h ∈ Q. The uniform R- boundedness of the set { ξβDβΨh (ξ) : ξ ∈ Rn\ {0} , β ∈ Un } , i.e., sup h∈Q R ({ ξβDβΨh (ξ) : ξ ∈ Rn\ {0} , β ∈ Un }) ≤ K implies that Ψh is a uniform collection of Fourier multipliers. Remark 1. Note that, if E is UMD-space then e.g., by virtue of [8] (Theorem 3.25) it satisfies the multiplier condition. Definition 2. The ϕ-positive operator A is said to be R-positive in a Banach space E if the set{ A (A+ ξI)−1 : ξ ∈ Sϕ } is R-bounded. An operator function A (x) is said to be ϕ-positive in E uniformly in x if domain D (A (x)) of the A (x) is independent of x, D (A (x)) is dense in E and ∥∥∥(A (x) + λI)−1 ∥∥∥ ≤ M 1 + |λ| for any λ ∈ Sϕ, ϕ ∈ [0 , π) . The ϕ-positive operator A (x) , x ∈ G is said to be uniformly R-positive in a Banach space E if there exists ϕ ∈ [0 , π) such that the set{ A (x) (A (x) + ξI)−1 : ξ ∈ Sϕ } is uniformly R-bounded, i.e., sup x∈G R ([ A (x) (A (x) + ξI)−1 ] : ξ ∈ Sϕ ) ≤M. Let σ∞ (E1, E2) denote the space of all compact operators from E1 to E2. For E1 = E2 = E it is denoted by σ∞ (E) . Let D (Ω;E) denote the class of all E-valued infinite differentiable functions on domain Ω with compact supports. For E = C it denotes by D (Ω) . Let α = (α1, α2, . . . , αn) is a n-tuples of positive integer, Dα = Dα1 1 Dα2 2 . . . Dαn n and |α| = = ∑n k=1 αk. ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 7 986 V. B. SHAKHMUROV Definition 3. Let f ∈ Lp (Ω;E) . The function (Dαf) : Ω → E is called to be generalized derivative of f on Ω if the following equality:∫ Ω Dαf (x)ϕ (x) dx = (−1)|α| ∫ Ω f (x)Dαϕ (x) dx holds for all ϕ ∈ D (Ω) . Let E0 and E be two Banach spaces and E0 is continuously and densely embedded into E and l = (l1, l2, . . . , ln) . We let W l p (Ω;E0, E) denote the space of all functions u ∈ Lp (Ω;E0) possessing generalized derivatives Dlk k u = ∂lku ∂xlkk such that Dlk k u ∈ Lp (Ω;E) with the norm ‖u‖W l p(Ω;E0,E) = ‖u‖Lp(Ω;E0) + n∑ k=1 ∥∥∥Dlk k u ∥∥∥ Lp(Ω;E) <∞. Let ε = (ε1, ε2, . . . , εn) . Consider the following parameterized norm: ‖u‖W l p,ε(Ω;E0,E) = ‖u‖Lp(Ω;E0) + n∑ k=1 εk ∥∥∥Dlk k u ∥∥∥ Lp(Ω;E) <∞. If G+ = G×R+, p = (p, p1) , Lp (G+;E) will be denote the space of all p-summable E-valued functions with mixed norm (see, e.g., [7] for E = C), i.e., the space of all measurable E-valued functions f defined on G for which ‖f‖Lp(G+) = ∫ G  ∫ R+ ‖f (t, x)‖pE dt  p1/p dx  1/p1 <∞. Analogously, W l p (G+;E) denotes the E-valued anisotropic Sobolev space with corresponding mixed norm. Let W l p (G+;E0, E) = W l p (G+;E) ∩ Lp (G+;E0) endowed with norm ‖u‖W l p(G+;E0,E) = ‖u‖Lp(G+;E0) + n∑ k=1 ∥∥∥Dlk k u ∥∥∥ Lp(G+;E) <∞. 2. Background. The embedding theorems in vector valued spaces play a key role in the theory of DOEs. For estimating lower order derivatives we use following embedding theorems from [24]. Theorem A1. Let α = (α1, α2, . . . , αn) and Dα = Dα1 1 Dα2 2 . . . Dαn n and suppose the following conditions are satisfied: (1) E is a Banach space satisfying the multiplier condition; (2) A is an R-positive operator in E; ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 7 ANISOTROPIC DIFFERENTIAL OPERATORS WITH PARAMETERS AND APPLICATIONS 987 (3) α = (α1, α2, . . . , αn) and l = (l1, l2, . . . , ln) are n-tuples of nonnegative integer such that κ = ∑n k=1 αk lk ≤ 1, 0 ≤ µ ≤ 1− κ, 1 < p <∞, 0 < h ≤ h0, h0 is a fixed positive number and εk are small positive parameters; (4) Ω ⊂ Rn is a region such that there exists a bounded linear extension operator from W l p (Ω;E (A) , E) to W l p (Rn;E (A) , E) . Then the embedding DαW l p (Ω;E (A) , E) ⊂ Lp ( Ω;E ( A1−κ−µ)) is continuous and for all u ∈W l p (Ω;E (A) , E) the following uniform estimate holds: n∏ k=1 ε αk/lk k ‖Dαu‖Lp(Ω;E(A1−κ−µ)) ≤ h µ ‖u‖W l p,ε(Ω;E(A),E) + h−(1−µ) ‖u‖Lp(Ω;E) . Remark 2. If Ω ⊂ Rn is a region satisfying the strong l-horn condition (see [7], § 7), E = R, A = I, then for p ∈ (1,∞) there exists a bounded linear extension operator from W l p (Ω) = = W l p (Ω;R,R) to W l p (Rn) = W l p (Rn;R,R) . Theorem A2. Suppose all conditions of Theorem A1 are satisfied for 0 < µ ≤ 1− κ. Moreover, let Ω be a bounded region and A−1 ∈ σ∞ (E) . Then the embedding DαW l p (Ω;E (A) , E) ⊂ Lp ( Ω;E ( A1−κ−µ)) is compact. Theorem A3. Suppose all conditions of Theorem A1 satisfied. Let 0 < µ ≤ 1 − κ. Then the embedding DαW l p (Ω;E (A) , E) ⊂ Lp ( Ω; (E (A) , E)κ,p ) is continuous and there exists a positive constant Cµ such that for all u ∈ W l p (Ω;E (A) , E) the uniform estimate holds n∏ k=1 ε αk/lk k ‖Dαu‖Lp(Ω;(E(A),E)κ,p) ≤ Cµ [ hµ ‖u‖W l p,ε(Ω;E(A),E) + h−(1−µ) ‖u‖Lp(Ω;E) ] . 3. Statement of the problem. Consider the nonlocal BVP for the following parameter dependent anisotropic DOE with variable coefficients: n∑ k=1 εkak (x)Dlk k u (x) + [A (x) + λ]u (x) + ∑ |α:l|<1 n∏ k=1 ε αk/lk k Aα (x)Dαu (x) = f (x) , (3) mkj∑ i=0 εσikk [ αkjiD i ku (Gk0) + βkjiD i ku (Gkb) ] = 0, j = 1, 2, . . . , lk, k = 1, 2, . . . , n, (4) where σik = 1 lk ( i+ 1 p ) , α = (α1, α2, . . . , αn) , l = (l1, l2, . . . , ln) , |α : l| = n∑ k=1 αk lk , ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 7 988 V. B. SHAKHMUROV G = {x = (x1, x2, . . . , xn) , 0 < xk < bk} , Gk0 = (x1, x2, . . . , xk−1, 0, xk+1, . . . , xn) , Gkb = (x1, x2, . . . , xk−1, bk, xk+1, . . . , xn) , mkj ∈ {0, 1, . . . , lk − 1} , x (k) = (x1, x2, . . . , xk−1, xk+1, . . . , xn) , Gk = ∏ j 6=k (0, bj) , j, k = 1, 2, . . . , n, αkji, βkji are complex numbers, λ is a complex and εk are small positive parameters; ak are complex- valued functions on G, A (x) and Aα (x) are linear operators in E for x ∈ G. We assume that the domain D (A (x)) of operator valued function A (x) is independent of x. So, it will be denote by D (A) . The same time, the graphical norm E (A (x)) will be denote by E (A) . A function u ∈ W l p (G;E (A) , E, Lkj) = { u ∈W l p (G;E (A) , E) , Lkju = 0 } satisfying (3) a. e. on G is said to be solution of the problem (3), (4). We say the problem (3), (4) is Lp-separable, if for all f ∈ Lp (G;E) there exists a unique solution u ∈ W l p (G;E (A) , E) of the problem (3), (4) and a positive constant C depending only on G, p, l, E,A such that the following uniform coercive estimate holds: n∑ k=1 εk ∥∥∥Dlk k u ∥∥∥ Lp(G;E) + ‖Au‖Lp(G;E) ≤ C ‖f‖Lp(G;E) . By applying the trace theorem [25] (§ 1.8.2) we have the following theorem. Theorem A4. Let m and j be integer numbers, 0 ≤ j ≤ m − 1, θj = pj + 1 pm , 0 < ε ≤ 1, x0 ∈ [0, b] . Then, for u ∈ Wm p (0, b;E0, E) the transformations u → u(j) (x0) are bounded linear from Wm p (0, b;E0, E) onto (E0, E)θj ,p and the following inequality holds: εθj ∥∥∥u(j) (x0) ∥∥∥ (E0,E)θj ,p ≤ C (∥∥∥εu(m) ∥∥∥ Lp(0,b;E) + ‖u‖Lp (0,b;E0) ) . Proof. By virtue of [25] (§ 1.8.2), for u ∈Wm p (0, b;E0, E) the following inequality holds:∥∥∥u(j) (x0) ∥∥∥ (E0,E)θj ,p ≤ C (∥∥∥u(m) ∥∥∥ Lp(0,b;E) + ‖u‖Lp (0,b;E0) ) . Putting ũ (x) = u (µx) for 0 < µ < 1 and by applying the above estimate to ũ (x) we have µj ∥∥∥u(j) (x0) ∥∥∥ (E0,E)θj ,p ≤ ≤ C µm  b∫ 0 ∥∥∥u(m) (µx) ∥∥∥p E dx 1/p +  b∫ 0 ‖u (µx)‖pEo dx 1/p  . Substituting y = µx, in view of µ < 1 we get µj ∥∥∥u(j) (x0) ∥∥∥ (E0,E)θj ,p ≤ C [ µm−1/p ∥∥∥u(m) ∥∥∥ Lp(0,µb;E) + µ−1/p ‖u‖Lp (0,µb;E0) ] ≤ ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 7 ANISOTROPIC DIFFERENTIAL OPERATORS WITH PARAMETERS AND APPLICATIONS 989 ≤ C [ µm−1/p ∥∥∥u(m) ∥∥∥ Lp(0,b;E) + µ−1/p ‖u‖Lp (0,b;E0) ] . By chousing µm = ε we obtain the assertion. Let Gkx0 = (x1, x2, . . . , xk−1, x0, xk+1, . . . , xn) , x0 ∈ (0, bk) , k = 1, 2, . . . , n, Xk = Lp (Gk;E) , Yk = W l(k) p (Gk;E (A) , E) , l(k) = (l1, l2, . . . , lk−1, lk+1, . . . , ln) . By virtue of Theorem A4 we obtain the following theorem. Theorem A5. Let lk and j be integer numbers, θjk = 1 + pj + 1 plk , xk0 ∈ [0, bk] , j = 0, 1, . . . , lk− − 1, k = 1, 2, . . . , n. Then, for any u ∈ W l p (G;E0, E) the transformation u → Dj ku (Gkx0) is bounded linear from W l p (G;E0, E) onto Fkj and the following uniform estimate holds: ε θjk k ∥∥∥Dj ku (Gkx0) ∥∥∥ Fkj ≤ C ‖u‖Lp(G;E) + εk ∥∥∥Dlk k u ∥∥∥ Lp(G;E) + ∑ j 6=k ∥∥∥Dlj j u ∥∥∥ Lp(G;E) . Proof. It is clear that W l p (G;E0, E) = W lk p (0, bk;Yk, Xk) . Then by applying the Theorem A3 to the space W lk p (0, bk;Yk, Xk) we obtain the assertion. 4. BVP for partial DOE with parameters. Let us first consider the BVP for the parameter- dependent DOE with constant coefficients (Lε + λ)u = n∑ k=1 εkakD lk k u (x) + (A+ λ)u (x) = f (x) , (5) Lkju = mkj∑ i=0 εσikk [ αkjiD i ku (Gk0) + βkjiD i ku (Gkb) ] = fkj , (6) j = 1, 2, . . . , lk, k = 1, 2, . . . , n, where σik, Gk0 and Gkb are defined by (4), ak are complex numbers, λ is a complex and εk are small positive parameters and A is a linear operator in a Banach space E. Let ωk1, ωk2, . . . , ωklk be the roots of the characteristic equations ak ω lk + 1 = 0, k = 1, 2, . . . , n. Let [υknj ] be lk-dimensional matrix, and ηk = |[υknj ]| be determinant of matrix [υkij ] , where υkij = αkjmj (−ωki)lk , i = 1, 2, . . . , dk, υkij = βkjmjω lk ki, i = dk + 1, dk + 2, . . . , lk, 0 < dk < lk, i, j = 1, 2, . . . , lk. ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 7 990 V. B. SHAKHMUROV Condition 1. Assume the following conditions are satisfied: (1) E is a Banach space satisfying the multiplier condition; (2) A is an R-positive operator in E for ϕ ∈ [0 , π) ; (3) ak 6= 0, ∣∣αkjmj ∣∣+ ∣∣βkjmj ∣∣ > 0, ηk 6= 0 and |argωkj − π| ≤ π 2 − ϕ, j = 1, 2, . . . , dk, |argωkj | ≤ π 2 − ϕ, j = dk + 1, . . . , lk for 0 < dk < lk, k = 1, 2, . . . , n. Consider at first, the homogenous BVP (Lε + λ)u = n∑ k=1 εkakD lk k u (x) + (A+ λ)u (x) = f (x) , (7) Lkju = 0, j = 1, 2, . . . , lk. (8) Let B (ε) denote the operator in Lp (G;E) generated by BVP (7), (8), i. e., the operator defined as D (B (ε)) = W l p (G;E (A) , E, Lkj) = { u ∈W l p (G;E (A) , E) , Lkju = 0, j = 1, 2, . . . , lk, k = 1, 2, . . . , n, B (ε)u = n∑ k=1 εkakD lk k u+Au } . In a similar way as [5] (Theorem 5.1), [18] and [24] we obtain the following theorem. Theorem A6. Let Condition 1 be satisfied. Then: (a) problem (7), (8) for f ∈ Lp (G;E) , λ ∈ Sϕ, ϕ ∈ [0 , π) and sufficiently large |λ| has a unique solution u that belongs to W l p (G;E (A) , E) and the following coercive uniform estimate holds: n∑ k=1 lk∑ i=0 |λ|1−i/lk εi/lkk ∥∥Di ku ∥∥ Lp(G;E) + ‖Au‖Lp(G;E) ≤M ‖f‖Lp(G;E) ; (9) (b) the operator B (ε) is uniformly R-positive in Lp (G;E) . Now let Fkj = (Yk, Xk) 1+pmkj plk ,p . From Theorems A5 and A6 we have the following theorem. Theorem A7. Suppose Condition 1 is satisfied. Then for sufficiently large |λ| with |arg λ| ≤ ϕ problem (5), (6) has a unique solution u ∈ W l p (G;E (A) , E) for all f ∈ Lp (G;E) and fkj ∈ Fkj . Moreover, the following uniform coercive estimate holds: n∑ k=1 lk∑ i=0 |λ|1−i/lk εi/lkk ∥∥Di ku ∥∥ Lp(G;E) + ‖Au‖Lp(G;E) ≤ ≤M ‖f‖Lp(G;E) + n∑ k=1 lk∑ j=1 ‖fkj‖Fkj  . (10) ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 7 ANISOTROPIC DIFFERENTIAL OPERATORS WITH PARAMETERS AND APPLICATIONS 991 Consider the BVP (3), (4). Let ωk1 (x) , ωk2 (x) , . . . , ωklk (x) denote the roots of the characteristic equations ak (x) ωlk + 1 = 0, k = 1, 2, . . . , n. Let [υknj ] be lk-dimensional matrix, and ηk (x) = |[υknj ]| be determinant of matrix [υkij ] , where υkij = αkjmj (−ωki)lk , i = 1, 2, . . . , dk, υkij = βkjmjω lk ki, i = dk + 1, dk + 2, . . . , lk, 0 < dk < lk, i, j = 1, 2, . . . , lk. Condition 2. Assume: (1) E is a Banach space satisfying the multiplier condition; (2) operator valued function A (x) is a uniformly R-positive operator in E for ϕ ∈ [0 , π) ; (3) ak 6= 0, ∣∣αkjmj ∣∣+ ∣∣βkjmj ∣∣ > 0, ηk (x) 6= 0 and |argωkj − π| ≤ π 2 − ϕ, j = 1, 2, . . . , dk, |argωkj | ≤ π 2 − ϕ, j = dk + 1, . . . , lk, for x ∈ G, 0 < dk < lk, k = 1, 2, . . . , n. Remark 3. Let lk = 2mk, k = 1, 2, . . . , n, and ak = (−1)mk bk (x) , where bk are real-valued positive functions and mk are natural numbers. Then Condition 2 is satisfied for ϕ ∈ [0 , π) . Theorem 1. Suppose Condition 2 is satisfied and the following hold: (1) ak (x) are continuous functions on Ḡ, aj (0, x (k)) = aj (bk, x (k)) ; (2) A (x)A−1 (x̄) ∈ C ( Ḡ;B (E) ) , A (0, x (k)) = A (bk, x (k)) ; (3) Aα (x)A(1−|α:l|−µ) (x) ∈ L∞ (G;B (E)) for 0 < µ < 1− |α : l| . Then problem (3), (4) has a unique solution u ∈W l p (G;E (A) , E) for f ∈ Lp (G;E) and λ ∈ Sϕ with large enough |λ| . Moreover, the following coercive uniform estimate holds: n∑ k=1 lk∑ i=0 |λ|1−i/lk εi/lkk ∥∥Di ku ∥∥ Lp(G;E) + ‖Au‖Lp(G;E) ≤ C ‖f‖Lp(G;E) . (11) Proof. First we will show the uniqueness of the solution. For this aim we use microlocal analysis. Let D1,D2, . . . , DN be rectangular regions with sides parallel to coordinate planes covering G and let ϕ1, ϕ2, . . . , ϕN be a corresponding partition of unity, i.e., ϕj ∈ C∞0 (G) , σj = supp ϕj ⊂ Dj and∑N j=1 ϕj (x) = 1, where C∞0 (G) denotes the space of all infinitely differentiable functions on G with compact support. Now for u ∈ W l p (G;E (A) , E, Lki) , being solution of the equation (3) and uj (x) = u (x)ϕj (x) we get ( Lε + λ)uj = n∑ k=1 εkak (x)Dlk k uj (x) + (A (x) + λ)uj (x) = fj (x) , Lkiuj = 0, (12) where fj (x) = f (x)ϕj (x) + n∑ k=1 εkak (x) lk−1∑ i=0 C lki ( Di ku (x) ) ( Dlk−i k ϕj (x) ) − ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 7 992 V. B. SHAKHMUROV − ∑ |α:l|<1 n∏ k=1 ε αk/lk k ϕj (x)Aα (x)Dαu (x) , i = 1, 2, . . . , lk. (13) Freezing the coefficients of the equation (12), extending uj (x) in outside of σj we obtain the BVP n∑ k=1 εkak (x0j)D lk k uj (x) + (A (x0j) + λ)uj (x) = Fj (x) , x ∈ Dj , (14) Lkiuj = 0, i = 1, 2, . . . , lk, k = 1, 2, . . . , n, where Fj = fj + [A (x0j)−A (x)]uj + n∑ k=1 εk [ak (x0j)− ak (x)]Dlk k uj (x) , (15) and Cki -are usual coefficients of binomial. By applying Theorem A6 for all u ∈ W l p (Dj ;E (A) , E) we obtain the following a priori estimate: n∑ k=1 lk∑ i=0 |λ|1−i/lk εi/lkk ∥∥Di kuj ∥∥ Lp(Dj ;E) + ‖Auj‖Lp(Dj ;E) ≤ C ‖Fj‖Lp(Dj ;E) (16) for problems (14) defined on domains Dj containing the boundary points. In a similar way we obtain the same estimates for domains Dj ⊂ G. By using the representation of Fj , by Theorem A1, in view of the continuity of coefficients, choosing diameters of supp ϕj sufficiently small we get that for all small δ there is a positive continuous function C (δ) so that ‖Fj‖Lp(Dj ;E) ≤ ‖f.ϕj‖Lp(Dj ;E) + δ ‖uj‖W l p,ε(Dj ;E(A),E) + C (δ) ‖uj‖Lp(Dj ;E) . (17) Consequently, from (15) – (17) we have n∑ k=1 lk∑ i=0 |λ|1−i/lk εi/lkk ∥∥Di kuj ∥∥ Lp(Dj ;E) + ‖Auj‖Lp(Dj ;E) ≤ C ‖f‖Lp(Dj ;E) + +δ ‖uj‖W l p,ε(Dj ;E(A),E) +M (δ) ‖uj‖Lp(Dj ;E) . (18) Choosing εk < 1 from (18) we obtain n∑ k=1 lk∑ i=0 |λ|1−i/lk εi/lkk ∥∥Di kuj ∥∥ Lp(Dj ;E) + ‖Auj‖Lp(Dj ;E) ≤ ≤ C [ ‖f‖Lp(Dj ;E) + ‖uj‖Lp(Dj ;E) ] . (19) Then by using the equality u (x) = ∑N j=1 uj (x) and (19) we get (11) . Let Oε denote the operator generated by problem (3), (4) for λ = 0, i.e., D (Oε) = W l p (G;E (A) , E, Lkj) , ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 7 ANISOTROPIC DIFFERENTIAL OPERATORS WITH PARAMETERS AND APPLICATIONS 993 Oεu = n∑ k=1 εkak (x)Dlk k u+A (x)u+ ∑ |α:l|<1 n∏ k=1 εαkk Aα (x)Dαu. It is clear that ‖u‖Lp(G;E) = 1 |λ| ‖(Oε + λ)u−Oεu‖Lp(G;E) ≤ ≤ 1 |λ| [ ‖(Oε + λ)u‖Lp(G;E). + ‖Oεu‖Lp(G;E) ] . Hence, by using the definition of W l p (G;E (A) , E) and applying Theorem A1 we obtain ‖u‖p ≤ C |λ| [ ‖(Oε + λ)u‖Lp(G;E) + ‖u‖W l p,ε(G;E(A),E) ] . From the above estimate we have n∑ k=1 lk∑ i=0 |λ|1−i/lk εi/lkk ∥∥Di ku ∥∥ Lp(G;E) + ‖Au‖Lp(G;E) ≤ C ‖(Oε + λ)u‖Lp(G;E) . (20) The estimate (20) implies that uniqueness of solution of the problem (3), (4). It implies that the operator Oε + λ has a bounded inverse in its rank space. We need to show that this rank space coincides with the space Lp (G;E) , i.e., we have to show that for all f ∈ Lp (G;E) there is a unique solution of the problem (3), (4). We consider the smooth functions gj = gj (x) with respect to a partition of unity ϕj = ϕj (y) on the region G that equals 1 on supp ϕj , where supp gj ⊂ Dj and |gj (x)| < 1. Let us construct for all j the functions uj that are defined on the regions Ωj = G ∩Dj and satisfying problem (3), (4). The problem (3), (4) can be expressed as n∑ k=1 εkak (x0j)D lk k uj (x) +Aλ (x0j)uj (x) = gj { f + [A (x0j)−A (x)]uj+ + n∑ k=1 εk [ak (x0j)− ak (x)]Dlk k uj − ∑ |α:l|<1 n∏ k=1 ε αk/lk k Aα (x)Dαuj } , x ∈ Dj , (21) Lkiuj = 0, j = 1, 2, . . . , N. Consider operators Ojλ (ε) = Oj (ε) + λ in Lp (Dj ;E) that are generated by BVPs (14), i. e., D (Oj (ε)) = W l p (Dj ;E (A) , E, Lki) , i = 1, 2, . . . , lk, k = 1, 2, . . . , n, Ojλ (ε)u = n∑ k=1 εkak (x0j)D lk k uj (x) + [A (x0j) + λ]uj (x) , x ∈ Dj , j = 1, . . . , N. By virtue of Theorem A6, the local operators Ojλ have inverses O−1 jλ for |arg λ| ≤ ϕ and for suffi- ciently large |λ| . Moreover, the operators O−1 jλ are bounded from Lp (Dj ;E) to W l p (Dj ;E (A) , E) and for f ∈ Lp (Dj ;E) we have the following uniform estimate: ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 7 994 V. B. SHAKHMUROV n∑ k=1 lk∑ i=0 |λ|1−i/lk εi/lkk ∥∥∥Di kO −1 jλ f ∥∥∥ Lp(Dj ;E) + ∥∥∥AO−1 jλ f ∥∥∥ Lp(Dj ;E) ≤ C ‖f‖Lp(Dj ;E) . (22) Extending solutions uj of problems (21) zero on outside of supp ϕj and using the substitutions uj = O−1 jλ υj we obtain the operator equations υj = Kjλυj + gjf, j = 1, 2, . . . , N, (23) where Kjλ = Kjλ (ε) are bounded linear operators in Lp (Dj ;E) defined by Kjλ = Kjλ (ε) = gj { f + [A (x0j)−A (x)]O−1 jλ + + n∑ k=1 εk [ak (x0j)− ak (x)]Dlk k O −1 jλ − ∑ |α : l|<1 n∏ k=1 ε αk/lk k Aα (x)DαO−1 jλ } . In fact, due to smoothness of the coefficients of the expression Kjλ and in view of the estimate (22), for sufficiently large |λ| there is a sufficiently small δ > 0 such that∥∥∥[A (x0j)−A (x)]O−1 jλ υj ∥∥∥ Lp(Dj ;E) ≤ δ ‖υj‖Lp(Dj ;E) , n∑ k=1 εk ∥∥∥[ak (x0j)− ak (x)]Dlk k O −1 jλ υj ∥∥∥ Lp(Dj ;E) ≤ δ ‖υj‖Lp(Dj ;E) . Moreover, from the assumption (2) and by Theorem A1 we obtain that for all δ > 0 there is a constant C (δ) > 0 such that ∑ |α:l|<1 n∏ k=1 ε αk/lk k ∥∥∥Aα (x)DαO−1 jλ υj ∥∥∥ Lp(Dj ;E) ≤ δ ‖υj‖W l p(Dj ;E(A),E) + C (δ) ‖υj‖Lp(Dj ;E) . Hence, for |arg λ| ≤ ϕ with sufficiently large |λ| there is a γ ∈ (0, 1) such that ‖Kjλ‖ < γ. Consequently, equations (23) for all j have a unique solution υj = [I −Kjλ]−1 gjf . Moreover, ‖υj‖Lp(Dj ;E) = ∥∥∥[I −Kjλ]−1 gjf ∥∥∥ Lp(Dj ;E) ≤ ‖f‖Lp(Dj ;E) . Thus, [I −Kjλ]−1 gj are bounded linear operators from Lp (G;E) to Lp (Dj ;E) . Thus, the functions uj = Ujλf = O−1 jλ [I −Kjλ]−1 gjf are solutions of (21). Consider the following linear operator U = Uε in Lp (G;E) defined by D (U) = W l p (G;E (A) , E, Lkj) , j = 1, 2, . . . , lk, k = 1, 2, . . . , n, Uf = N∑ j=1 ϕj (y)Ujλf = O−1 jλ [I −Kjλ]−1 gjf, j = 1, 2, . . . , N. ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 7 ANISOTROPIC DIFFERENTIAL OPERATORS WITH PARAMETERS AND APPLICATIONS 995 It is clear from the constructions Ujλand from the estimate (22) that the operators Ujλ are bounded linear from Lp (G;E) to W l p (Dj ;E (A) , E) and for |arg λ| ≤ ϕ with sufficiently large |λ| we have n∑ k=1 lk∑ i=0 |λ|1−i/lk εk ∥∥Di kUjλf ∥∥ Lp(Dj ;E) + ‖AUjλf‖Lp(Dj ;E) ≤ C ‖f‖Lp(G;E) . (24) Therefore, U is a bounded linear operator in Lp (G;E) . By contraction of solution operators Ujλ of local equations (21), acting Oε + λ to u = ∑N j=1 ϕjUjλf gives (Oε + λ)u = N∑ j=1 (Oε + λ) (ϕjUjλf) = = N∑ j=1 [ϕj (Oε + λ) (Ujλf) + Φjλf ] = N∑ j=1 ϕjgjf + N∑ j=1 Φjλf = f + N∑ j=1 Φjλf, where Φjλ = Φjλ (ε) are bounded linear operators defined by Φjλf = { n∑ k=1 εkak lk−1∑ i=0 C lki ( Di kUjλf ) Dlk−i k ϕj + + ∑ |α:l|<1 Aα n∏ k=1 ε αk/lk k αk−1∑ i=0 Cαki ( Di k (Ujλf) ) Dαk−i k ϕj } . Indeed, from Theorem A1, the estimate (24) and from the expression Φjλ we obtain that the operators Φjλ are bounded linear from Lp (G;E) to Lp (G;E) and for |arg λ| ≤ ϕ with sufficiently large |λ| there is an δ ∈ (0, 1) such that ‖Φjλ‖ < δ. Therefore, there exists a bounded linear invertible operator( I + ∑N j=1 Φjλ )−1 , i.e., we infer for all f ∈ Lp (G;E) that the BVP (3), (4) has a unique solution u (x) = (Oε + λ)−1 f = N∑ j=1 ϕjO −1 jλ [I −Kjλ]−1 gj I + N∑ j=1 Φjλ −1 f. Result 1. Theorem 1 implies that the resolvent (Oε + λ)−1 satisfies the following anisotropic type uniform sharp estimate n∑ k=1 lk∑ i=0 |λ|1−i/lk εi/lkk ∥∥∥Di k (Oε+λ)−1 ∥∥∥ B(Lp(G;E)) + ∥∥∥A (Oε + λ)−1 ∥∥∥ B(Lp(G;E)) ≤ C for |arg λ| ≤ ϕ and ϕ ∈ [0 , π) . Theorem 2. Let all conditions of Theorem 1 hold and A−1 ∈ σ∞ (E) . Then the operator Oε is Fredholm from W l p (G;E (A) , E) into Lp (G;E) . ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 7 996 V. B. SHAKHMUROV Proof. Theorem 1 implies that the operator Oε+λ for sufficiently large |λ| has a bounded inverse (Oε+λ)−1 from Lp (G;E) to W l p (G;E (A) , E) , that is the operator Qε+λ is Fredholm from W l p (G;E (A) , E) into Lp (G;E) . Then, by Theorem A2 and the perturbation theory of linear operators we obtain that the operator Oε is Fredholm from W l p (G;E (A) , E) into Lp (G;E) . Example 1. Now, let us consider a special case of (3), (4). Let E = C, l1 = 2 and l2 = 4, n = 2, G = (0, 1)× (0, 1) and A = a (x, y) > 0, i. e., consider the problem Lεu = −ε1a1 ∂2u ∂x2 + ε2a2 ∂4u ∂y4 + bε 1/2 1 ε 1/4 2 ∂2u ∂x∂y + au = f (x, y) , m1j∑ i=0 εσi11 [ αjiu (i) x (0, y) + m1j∑ i=0 βjiu (i) x (1, y) ] = 0, j = 1, 2, (25) m2j∑ i=0 εσi22 [ αjiu (i) y (0, y) + m1j∑ i=0 βjiu (i) y (1, y) ] = 0, j = 1, 2, 3, 4, where ε1 and ε2 are positive parameters, ak = ak (x, y) , k = 1, 2 are real-valued functions on G and σi1 = 1 2 ( i+ 1 p ) , σi2 = 1 4 ( i+ 1 p ) , m1j ∈ {0, 1} , m2j ∈ {0, 1, 2, 3} , ak 6= 0, ∣∣αkjmj ∣∣+ ∣∣βkjmj ∣∣ > 0, ηk 6= 0, a, ak > 0, a, a1, a2 ∈ C ( Ḡ ) , b ∈ L∞ (G) , a (0, y) = a (1, y) , a (x, 0) = a (x, 1) , ak (0, y) = ak (1, y) , ak (x, 0) = ak (x, 1) , x, y ∈ G, k = 1, 2. Result 2. Theorem 1 implies that for each f ∈ Lp (G) and sufficiently large a the problem (25) has a unique solution u ∈W l p(G) satisfying the uniform coercive estimate ε1 ∥∥D2 xu ∥∥ Lp(G) + ε2 ∥∥∥D[4] y u ∥∥∥ Lp(G) + ‖u‖Lp(G) ≤ C ‖f‖Lp(G) . Example 2. Consider the following BVP for the system of anisotropic PDEs with variable coefficients n∑ k=1 (−1)mk εkbk (x)D2mk k um (x) + (dm (x) + λ)um (x) = fm (x) , mkj∑ i=0 αkjiε i kD i kum (Gk0) + mkj∑ i=0 βkjiε i kD i kum (Gkb) = 0, k = 1, 2, . . . , n, j = 1, 2, . . . , 2mk, m = 1, 2, . . . , ν, where bk are positive continuous function on G, E = Cν , λ is a complex, εk, k = 1, 2, . . . , n, are positive parameters and dm (x) > 0, m = 1, 2, . . . , ν. ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 7 ANISOTROPIC DIFFERENTIAL OPERATORS WITH PARAMETERS AND APPLICATIONS 997 Result 3. Let bk, dm ∈ C ( Ḡ ) , bk 6= 0, ∣∣αkjmj ∣∣+∣∣βkjmj ∣∣ > 0, ηk 6= 0 and bj (Gk0) = bj (Gkb) , dm (Gk0) = dm (Gkb) . Then, Theorem 1 implies that for each f ∈ Lp (G;Cν) and for all λ ∈ S (ϕ) with sufficiently large |λ| the above problem has a unique solution u ∈ W l p(G;Cν) satisfying the uniform coercive estimate n∑ k=1 2mk∑ i=0 |λ|1−i/2mk εi/2mkk ∥∥Di ku ∥∥ Lp(G;Cν) ≤ C ‖f‖Lp(G;Cν) . 5. Abstract Cauchy problem for parabolic equation with small parameters. Consider now mixed BVP for the following parabolic equation with small parameters, i. e., ∂u ∂t + n∑ k=1 εkak (x)Dlk k u+A (x)u = f (t, x) , (26) mkj∑ i=0 εσkik [ αkjiD i ku (t, Gk0) + βkjiD i ku (t, Gkb) ] = 0, j = 1, 2, . . . , lk, (27) u (0, x) = 0, σki = 1 lk ( i+ 1 p ) , t ∈ R+, x ∈ G, where A (x) is an operator function in a Banach space E for x ∈ G, ak are complex valued functions, εk are small positive parameters, G, Gk0 and Gkb are domains defined in the problem (3), (4). In this section, we obtaın the existence and uniqueness of the maximal regular solution of problem (26), (27) in mixed Lp-norms. Let Oε denote differential operator generated by (3), (4) for λ = 0. Theorem 3. Let all conditions of Theorem 1 are hold for Aα = 0 and ϕ ∈ (π 2 , π ) . Then: (a) the operator Oε is an R-positive in Lp (G;E) ; (b) the operator Oε is a generator of an analytic semigroup. Proof. Really, by virtue of Theorem 1 we obtain that for f ∈ Lp (G;E) the BVP (3), (4) have a unique solution expressing in the form u (x) = (Oε + λ)−1 f = N∑ j=1 ϕjO −1 jλ [I −Kjλ]−1 gj I + N∑ j=1 Φjλ −1 f, where Ojλ = Oj (ε) + λ are local operators generated by BVPs with constant coefficients of type (7), (8) and Kjλ = Kjλ (ε) ,Φjλ = Φjλ (ε) are uniformly bounded operators defined in the proof of the Theorem 1. By virtue of Theorem A6 operators Oj (ε) are R-positive. Then by using the above representation and by virtue of Kahane’s contraction principle, product and additional properties of the collection of R-bounded operators (see, e.g., [8], Lemma 3.5, Proposition 3.4) we obtain the assertions. Theorem 4. Let all conditions of Theorem 3 hold. Then for f ∈ Lp (G+;E) problem (26), (27) has a unique solution u ∈ W 1,l p (G+;E (A) , E) and the following uniform coercive estimate holds:∥∥∥∥∂u∂t ∥∥∥∥ Lp(G+;E) + n∑ k=1 εk ∥∥∥Dlk k u ∥∥∥ Lp(G+;E) + ‖Au‖Lp(G+;E) ≤ C ‖f‖Lp(G+;E) . ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 7 998 V. B. SHAKHMUROV Proof. The problem (26), (27) can be expressed as the following Cauchy problem: du dt +Oεu (t) = f (t) , u (0) = 0. (28) The Theorem 3 implies that the operator Oε is R-positive and also is a generator of an analytic semigroup in F = Lp (G;E) . Then by virtue of [1] or [26] (Theorem 4.2) we obtain that for all f ∈ Lp1 ((R+) ;F ) problem (28) has a unique solution u ∈W 1 p1 ((0, 1) ;D (O) , F ) and the following uniform estimate holds:∥∥∥∥dudt ∥∥∥∥ Lp1 (R+;F ) + ‖Oεu‖Lp1 (R+;F ) ≤ C ‖f‖Lp1 (R+;F ) . (29) Since Lp1 (0, 1;F ) = Lp (G+;E) , by Theorem1 we have ‖Oεu‖Lp1 (R+;F ) = D (Oε) . This relation and the estimate (29) implies the assertion. 6. BVPs for quasielliptic PDE with small parameters. In this section, maximal regularity properties of anisotropic PDE with small parameters are studied. Maximal regularity properties for PDEs have been studied, e.g., in [8] for smooth domains and in [12] for nonsmooth domains. In this section, consider the following BVP with small parameters: Lu = n∑ k=1 εkak (x)Dlk k u (x, y) + ∑ |α|≤2m aα (y)Dα y u (x, y) + + ∑ |β:l|<1 n∏ k=1 ε αk/lk k bβ (x, y)Dβ yu (x, y) + λu (x, y) = f (x, y) , x ∈ G, y ∈ Ω, (30) Lkju = mkj∑ i=0 εσkik [ αkjiD i ku (Gk0, y) + βkjiD i ku (Gkb, y) ] = 0, y ∈ Ω, (31) j = 1, 2, . . . , lk, x (k) ∈ Gk, Bju = ∑ |β|≤mj bjβ (y)Dβ yu (x, y) |y∈∂Ω= 0, x ∈ G, j = 1, 2, . . . ,m, (32) where Dj = −i ∂ ∂yj , αkji, βkji are complex number, λ is a complex and εk are small positive parameter, y = (y1, . . . , yµ) ∈ Ω ⊂ Rµ and σki = 1 lk ( i+ 1 p ) , G = {x = (x1, x2, . . . , xn) , 0 < xk < bk} , Gk0 = (x1, x2, . . . , xk−1, 0, xk+1, . . . , xn) , Gkb = (x1, x2, . . . , xk−1, bk, xk+1, . . . , xn) , mkj ∈ {0, 1, . . . , lk − 1} , ∣∣αkjmj ∣∣+ ∣∣βkjmj ∣∣ > 0, j = 1, 2, . . . , lk, x (k) = (x1, x2, . . . , xk−1, xk+1, . . . , xn) , Gk = ∏ j 6=k (0, bj) , j, k = 1, 2, . . . , n. ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 7 ANISOTROPIC DIFFERENTIAL OPERATORS WITH PARAMETERS AND APPLICATIONS 999 Let ωkj = ωkj (x) , j = 1, 2, . . . , lk, k = 1, 2, . . . , n, denote the roots of the equations ak (x)ωlk + 1 = 0. Let Qε denote the operator generated by BVP (30) – (33). Let F = B ( Lp ( Ω̃ )) , Ω̃ = G× Ω. Theorem 5. Let the following conditions be satisfied: (1) aα ∈ C ( Ω̄ ) for each |α| = 2m and aα ∈ [L∞ + Lrk ] (Ω) for each |α| = k < 2m with rk ≥ p1, p1 ∈ (1,∞) , 2m− k > l rk and bβ ∈ L∞(Ω̃); (2) bjβ ∈ C2m−mj (∂Ω) for each j, β, mj < 2m, p ∈ (1,∞) ; (3) for y ∈ Ω̄, ξ ∈ Rµ, η ∈ S (ϕ1) , ϕ1 ∈ [ 0, π 2 ) , |ξ|+ |η| 6= 0 let η + ∑ |α|=2m aα (y) ξα 6= 0; (4) for each y0 ∈ ∂Ω the local BVPs in local coordinates corresponding to y0 η + ∑ |α|=2m aα (y0)Dαϑ (y) = 0, Bj0ϑ = ∑ |β|=mj bjβ (y0)Dβϑ (y) = hj , j = 1, 2, . . . ,m, has a unique solution ϑ ∈ C0 (R+) for all h = (h1, h2, . . . , hm) ∈ Rm and for ξp ∈ Rµ−1 with |ξ p|+ |η| 6= 0; (5) ak ∈ C ( Ḡ ) , ak (x) 6= 0, ∣∣αkjmj ∣∣+ ∣∣βkjmj ∣∣ > 0, ηk (x) 6= 0 and |argωkj − π| ≤ π 2 − ϕ, j = 1, 2, . . . , dk, |argωkj | ≤ π 2 − ϕ, ϕ ∈ [ 0, π 2 ) , j = dk + 1, . . . , lk, 0 < dk < lk, k = 1, 2, . . . , n, x ∈ G. Then: (a) problem (30) – (33) has a unique solution u ∈ W l,2m p (Ω̃) for f ∈ Lp(Ω̃) and λ ∈ Sϕ with large enough |λ| . Moreover, the following coercive uniform estimate holds: n∑ k=1 lk∑ i=0 |λ|1−i/lk εi/lkk ∥∥∥Dlk k u ∥∥∥ Lp(Ω̃) + ∑ |β|=2m ∥∥∥Dβ yu ∥∥∥ Lp(Ω̃) + ‖u‖Lp(Ω̃) ≤ C ‖f‖Lp(Ω̃) ; (b) for λ ∈ S (ϕ) and for sufficiently large |λ| there exists a resolvent (Qε + λ)−1 and n∑ k=1 lk∑ i=0 |λ|1−i/lk εik ∥∥∥Di k (Qε + λ)−1 ∥∥∥ F + ∥∥∥A (Qε + λ)−1 ∥∥∥ F ≤M ; (c) the problem (30) – (33) is Fredholm in Lp(Ω̃) for λ = 0. ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 7 1000 V. B. SHAKHMUROV Proof. LetE = Lp1 (Ω) . Then by [8] (Theorem 3.6), part (1) of Condition 2 is satisfied. Consider the operator A which is defined by D (A) = W 2m p1 (Ω;Bju = 0) , Au = ∑ |β|≤2m aβ (y)Dβu (y) . For x ∈ Ω we also consider operators Aα (x)u = bα (x, y)Dαu (y) , |α : l| < 1. The problem (30) – (33) can be rewritten as the form of (3), (4), where u (x) = u (x, .) and f (x) = = f (x, .) are functions with values in E = Lp1 (Ω) . From [8] (Theorem 8.2) problem ηu (y) + ∑ |β|≤2m aβ (y)Dβu (y) = f (y) , Bju = ∑ |β|≤mj bjβ (y)Dβu (y) = 0, j = 1, 2, . . . ,m, has a unique solution for f ∈ Lp1 (Ω) and arg η ∈ S (ϕ1) , |η| → ∞. Moreover, the operator A is R-positive in Lp1 , i.e., all conditions of the Theorem 1 hold. 7. Cauchy problem for infinite systems of parabolic equation with small parameters. Consider the infinity systems of BVP for the anisotropic PDE with parameters ∂u ∂t + n∑ k=1 εkak (x) ∂lkum ∂xlkk + ∞∑ j=1 (dj (x) + λ)um+ + ∑ |α:l|<1 ∞∑ j=1 n∏ k=1 ε αk/lk k dαjm (x)Dαuj = fm (t, x) , m = 1, 2, . . . ,∞, (33) mkj∑ i=0 εσkik [ αkjiD (i) k u (t, Gk0) + mkj∑ i=0 βkjiD (i) k u (t, Gkb) ] = 0, j = 1, 2, . . . , lk, (34) u (0, x) = 0, x ∈ G, t ∈ (0,∞) , x (k) ∈ Gk, j = 1, 2, . . . , lk, where ak, dk, dαjm are complex valued functions, εk are small positive parameters and αkji, βkji are complex numbers. Let σki = 1 lk ( i+ 1 p ) , G = {x = (x1, x2, . . . , xn) , 0 < xk < bk} , Gk0 = (x1, x2, . . . , xk−1, 0, xk+1, . . . , xn) , Gkb = (x1, x2, . . . , xk−1, bk, xk+1, . . . , xn) , mkj ∈ {0, 1, . . . , lk − 1} , x (k) = (x1, x2, . . . , xk−1, xk+1, . . . , xn) , Gk = ∏ j 6=k (0, bj) , j, k = 1, 2, . . . , n, ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 7 ANISOTROPIC DIFFERENTIAL OPERATORS WITH PARAMETERS AND APPLICATIONS 1001 D (x) = {dm (x)} , dm > 0, u = {um} , du = {dmum} , m = 1, 2, . . . ,∞, lq (D) = u : u ∈ lq, ‖u‖lq(D) = ‖Du‖lq = ( ∞∑ m=1 |dmum|q )1/q <∞  , j = 1, 2, . . . , lk, k = 1, 2, . . . , n. Let V = V (ε) denote the operator in Lp (G; lq) generated by problem (34), (35). Let G+ = (0,∞)×G, B = B (Lp (G; lq)) . Theorem 6. Let p ∈ (1,∞) , ak ∈ C ( Ḡ ) , ai (0, x (k)) = ai (bk, x (k)) , ak (x) 6= 0, ∣∣αkjmj ∣∣+ + ∣∣βkjmj ∣∣ > 0, ηk (x) 6= 0 and |argωkj − π| ≤ π 2 − ϕ, |argωkj | ≤ π 2 − ϕ, j = 1, 2, . . . , lk, ϕ ∈ ϕ ∈ [ 0, π 2 ) , x ∈ G, dm ∈ C ( Ḡ ) , dαjm ∈ L∞ (G) such that max α sup m ∞∑ j=1 dαjm (x) d −(1−|α : l|−µ) j (x) < M for all x ∈ G and 0 < µ < 1− |α : l| . Then for f (t, x) = {fm (t, x)}∞1 ∈ Lp (G; lq) , |arg λ| ≤ ϕ and sufficiently large |λ| the problem (34), (35) has a unique solution u = {um (t, x)}∞1 that belongs to the space W 1,l p (G+, lq (D) , lq) and the following coercive uniform estimate holds:∥∥∥∥∂u∂t ∥∥∥∥ Lp(G+;lq) + n∑ k=1 εk ∥∥∥Dlk k u ∥∥∥ Lp(G+;lq) + ‖Au‖Lp(G+;lq) ≤ C ‖f‖Lp(G+;lq) . Proof. Let E = lq, A and Aα (x) be infinite matrices, such that A = [dmδmj ] , Aα (x) = [dαjm (x)] , m, j = 1, 2, . . . ,∞. It is clear that the operator A is R-positive in lq. The problem (34), (35) can be rewritten in the form (26), (27). Then, from Theorem 4 we obtain that the assertion. 1. Amann H. Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications // Math. Nachr. – 1997. – 186 – P. 5 – 56. 2. Amann H. Linear and quasi-linear equations. – Birkhäuser, 1995. – Vol. 1. 3. Agarwal R., O’ Regan, D., Shakhmurov V. B. Degenerate anisotropic differential operators and applications // Boundary Value Problems. – 2011. – 2011. 4. Ashyralyev A. On well-posedeness of the nonlocal boundary value problem for elliptic equations // Numer. Funct. Anal. & Optim. – 2003. – 24, № 1-2. – P. 1 – 15. 5. Agarwal R., O’ Regan, D., Shakhmurov V. B. Degenerate anisotropic differential operators and applications // Boundary Value Problems. – 2011. – 2011. – 27 p. 6. Burkholder D. L. A geometric condition that implies the existence of certain singular integrals of Banach-space- valued functions // Conf. Harmonic Analysis in honor of Antoni Zygmund. – Chicago, Illinois, 1981. – Vols I, II. – P. 270 – 286. 7. Besov O. V., Ilin V. P., Nikolskii S. M. Integral representations of functions and embedding theorems. – Wiley, 1978. 8. Denk R., Hieber M., Prüss J. R-boundedness, Fourier multipliers and problems of elliptic and parabolic type // Mem. Amer. Math. Soc. – 2003. – 166, № 788. ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 7 1002 V. B. SHAKHMUROV 9. Favini A., Shakhmurov V., Yakubov Y. Regular boundary value problems for complete second order elliptic differential- operator equations in UMD Banach spaces // Semigroup Forum. – 2009. – 79, № 1. 10. Gorbachuk V. I., Gorbachuk M. L. Boundary value problems for differential-operator equations. – Kiev: Naukova Dumka, 1984. 11. Goldstein J. A. Semigroups of linear operators and applications. – Oxford: Oxford Univ. Press, 1985. 12. Grisvard P. Elliptic problems in non smooth domains. – Pitman, 1985. 13. Krein S. G. Linear differential equations in Banach space. – Providence, 1971. 14. Lunardi A. Analytic semigroups and optimal regularity in parabolic problems. – Birkhäuser, 2003. 15. Lions J-L., Magenes E. Nonhomogenous boundary value problems. – Moscow: Mir, 1971. 16. Sobolevskii P. E. Inequalities coerciveness for abstract parabolic equations // Dokl. Akad. Nauk. SSSR. – 1964. – 57, № 1. – P. 27 – 40. 17. Shahmurov R. On strong solutions of a Robin problem modeling heat conduction in materials with corroded boundary // Nonlinear Anal., Real-wold App. – 2011. – 13, № 1. – P. 441 – 451. 18. Shakhmurov V. B. Linear and nonlinear abstract equations with parameters // Nonlinear Anal., Meth. and Appl. – 2010. – 73. – P. 2383 – 2397. 19. Shakhmurov V. B. Nonlinear abstract boundary value problems in vector-valued function spaces and applications // Nonlinear Anal. Ser. A: Theory, Methods & Appl. – 2006. – 67, № 3. – P. 745 – 762. 20. Shakhmurov V. B. Elliptic operators, Compact embedding in Besov spaces and B-separable // Sci. China. Ser. A: Math. – 2006. – 53, № 4. – P. 1067 – 1084. 21. Shakhmurov V. B. Imbedding theorems and their applications to degenerate equations // Different. Equat. – 1988. – 24, № 4. – P. 475 – 482. 22. Shakhmurov V. B. Coercive boundary value problems for regular degenerate differential-operator equations // J. Math. Anal. and Appl. – 2004. – 292, № 2. – P. 605 – 620. 23. Shakhmurov V. B. Separable anisotropic differential operators and applications // J. Math. Anal. and Appl. – 2006. – 327, № 2. – P. 1182 – 1201. 24. Shakhmurov V. B. Degenerate differential operators with parameters // Abstract and App. Anal. – 2007. – 2006. – P. 1 – 27. 25. Triebel H. Interpolation theory. Function spaces. Differential operators. – Amsterdam: North-Holland, 1978. 26. Weis L. Operator-valued Fourier multiplier theorems and maximal Lp regularity // Math. Ann. – 2001. – 319. – P. 735 – 758. 27. Yakubov S. Completeness of root functions of regular differential operators. – New York: Longman, 1994. 28. Yakubov S. A nonlocal boundary value problem for elliptic differential-operator equations and applications // Integr. Equat. Oper. Theory. – 1999. – 35. – P. 485 – 506. 29. Yakubov S., Yakubov Ya. Differential-operator equations. Ordinary and partial differential equations. – Boca Raton: Chapman and Hall /CRC, 2000. Received 25.06.12, after revision — 18.10.13 ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 7