Диаметры графов коммутативности сплетений групп подстановок

Нехай G — група, а Z(G) — її центр. Граф комутативності групи G — це неорiєнтований граф Γ(G) з множиною вершин G Z(G), де вершини x та y з'єднуються ребром тоді і тільки тоді, коли xy=yx. У статті вивчаються графи комутативності вінцевих добутків HςG, де G — група підстановок, що транзитивно д...

Full description

Saved in:
Bibliographic Details
Published in:Український математичний журнал
Date:2014
Main Author: Лещенко, Ю.Ю.
Format: Article
Language:Russian
Published: Інститут математики НАН України 2014
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/166065
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Диаметры графов коммутативности сплетений групп подстановок / Ю.Ю. Лещенко // Український математичний журнал. — 2014. — Т. 66, № 5. — С. 656–665. — Бібліогр.: 16 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:Нехай G — група, а Z(G) — її центр. Граф комутативності групи G — це неорiєнтований граф Γ(G) з множиною вершин G Z(G), де вершини x та y з'єднуються ребром тоді і тільки тоді, коли xy=yx. У статті вивчаються графи комутативності вінцевих добутків HςG, де G — група підстановок, що транзитивно діє на X („активна" група вінцевого добутку), а (H,Y) — абелева група підстановок на Y. Let G be a group and let Z(G) be the center of G. The commuting graph of the group G is an undirected graph Γ(G) with the vertex set G \ Z(G) such that two vertices x, y are adjacent if and only if xy = yx. We study the commuting graphs of permutational wreath products H G, where G is a transitive permutation group acting on X (the top group of the wreath product) and (H, Y) is an Abelian permutation group acting on Y.
ISSN:1027-3190