Гомотопические свойства пространств гладких функций на 2-торе

Нехай f:T²→R — Функція Морса на 2-Topi, S(f) та O(f) — її стабілізатор та орбіта відносно правої дії групи диФєоморФізмів D(T²), Did(T²) — тотожна компонента групи D(T²) i S'(f)=S(f)∩Did(T²). В статті наведено достатні умови, за яких π1O(f)=π1Did(T²)×π0S′(f)≡Z²×π0S′(f). Отриманий результат є...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Український математичний журнал
Дата:2014
Автори: Максименко, С.И., Фещенко, Б.Г.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут математики НАН України 2014
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/166102
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Гомотопические свойства пространств гладких функций на 2-торе / С.И. Максименко, Б.Г. Фещенко // Український математичний журнал. — 2014. — Т. 66, № 9. — С. 1205–1212. — Бібліогр.: 13 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Нехай f:T²→R — Функція Морса на 2-Topi, S(f) та O(f) — її стабілізатор та орбіта відносно правої дії групи диФєоморФізмів D(T²), Did(T²) — тотожна компонента групи D(T²) i S'(f)=S(f)∩Did(T²). В статті наведено достатні умови, за яких π1O(f)=π1Did(T²)×π0S′(f)≡Z²×π0S′(f). Отриманий результат є справедливим для більш широкого класу функцій, особливості яких еквівалентні однорідним многочленам без кратних множників. Let f : T² → ℝ be a Morse function on a 2-torus, let S(f) and O (f) be, respectively, its stabilizer and orbit with respect to the right action of the group D (T²) of diffeomorphisms of T 2, let D id(T 2), be the identity path component of the group D (T²), and let S′(f) = S(f) ∩ D id(T²). We present sufficient conditions under which π1O(f)=π1Did(T²)×π0S′(f)≡Z²×π0S′(f). The obtained result is true for a larger class of functions whose critical points are equivalent to homogeneous polynomials without multiple factors.
ISSN:1027-3190