Теорема Мальмквиста для решений дифференциальных уравнений в окрестности точки ветвления
Доведено аналог теореми Мальмквіста про picT розв'язків диференціального рівняння f′=P(z,f)/Q(z,f), в якому P(z,f) i Q(z,f) — многочлени за всіма змінними, для випадку, коли коефіцієнти рівняння та його розв'язки мають точку галуження (наприклад, логарифмічну особливу точку). An analog of...
Saved in:
| Published in: | Український математичний журнал |
|---|---|
| Date: | 2014 |
| Main Authors: | , |
| Format: | Article |
| Language: | Russian |
| Published: |
Інститут математики НАН України
2014
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/166112 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Теорема Мальмквиста для решений дифференциальных уравнений в окрестности точки ветвления / А.А. Мохонько, А.З. Мохонько // Український математичний журнал. — 2014. — Т. 66, № 9. — С. 1286–1290. — Бібліогр.: 8 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | Доведено аналог теореми Мальмквіста про picT розв'язків диференціального рівняння f′=P(z,f)/Q(z,f), в якому P(z,f) i Q(z,f) — многочлени за всіма змінними, для випадку, коли коефіцієнти рівняння та його розв'язки мають точку галуження (наприклад, логарифмічну особливу точку).
An analog of the Malmquist theorem on the growth of solutions of the differential equation f′=P(z,f)/Q(z,f), where P(z,f) and Q(z,f) are polynomials in all variables, is proved for the case where the coefficients and solutions of this equation have a branching point in infinity (e.g., a logarithmic singularity).
|
|---|---|
| ISSN: | 1027-3190 |