A generalization of lifting modules
We introduce the notion of I -lifting modules as a proper generalization of the notion of lifting modules and present some properties of this class of modules. It is shown that if M is an I -lifting direct projective module, then S/▽ is regular and ▽=JacS, where S is the ring of all R-endomorphisms...
Saved in:
| Published in: | Український математичний журнал |
|---|---|
| Date: | 2014 |
| Main Author: | |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2014
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/166121 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | A generalization of lifting modules / T.A. Kalati // Український математичний журнал. — 2014. — Т. 66, № 11. — С. 1477–1484. — Бібліогр.: 19 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-166121 |
|---|---|
| record_format |
dspace |
| spelling |
Kalati, T.A. 2020-02-18T05:34:26Z 2020-02-18T05:34:26Z 2014 A generalization of lifting modules / T.A. Kalati // Український математичний журнал. — 2014. — Т. 66, № 11. — С. 1477–1484. — Бібліогр.: 19 назв. — англ. 1027-3190 https://nasplib.isofts.kiev.ua/handle/123456789/166121 512.5 We introduce the notion of I -lifting modules as a proper generalization of the notion of lifting modules and present some properties of this class of modules. It is shown that if M is an I -lifting direct projective module, then S/▽ is regular and ▽=JacS, where S is the ring of all R-endomorphisms of M and ▽={ϕ∈S|Imϕ≪M}. Moreover, we prove that if M is a projective I -lifting module, then M is a direct sum of cyclic modules. The connections between I -lifting modules and dual Rickart modules are presented. Введено поняття I-підйомних модулів як природне узагальнення підйомних модулів. Наведено дєякі властивості цього класу модулів. Показано, що якщо M — прямий проективний модуль I-підйому, то S/▽ є регулярною i ▽=JacS, де S — кільце всіх R-ендоморфізмів M, а ▽={ϕ∈S|Imϕ≪M}. Більш того, доведено, що якщо M — проективний I-підйомний модуль, то M є прямою сумою циклічних модулів. Встановлено зв'язки між I-підйомними модулями та дуальними модулями Рікарта. en Інститут математики НАН України Український математичний журнал Статті A generalization of lifting modules Узагальненння підйомних модулів Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
A generalization of lifting modules |
| spellingShingle |
A generalization of lifting modules Kalati, T.A. Статті |
| title_short |
A generalization of lifting modules |
| title_full |
A generalization of lifting modules |
| title_fullStr |
A generalization of lifting modules |
| title_full_unstemmed |
A generalization of lifting modules |
| title_sort |
generalization of lifting modules |
| author |
Kalati, T.A. |
| author_facet |
Kalati, T.A. |
| topic |
Статті |
| topic_facet |
Статті |
| publishDate |
2014 |
| language |
English |
| container_title |
Український математичний журнал |
| publisher |
Інститут математики НАН України |
| format |
Article |
| title_alt |
Узагальненння підйомних модулів |
| description |
We introduce the notion of I -lifting modules as a proper generalization of the notion of lifting modules and present some properties of this class of modules. It is shown that if M is an I -lifting direct projective module, then S/▽ is regular and ▽=JacS, where S is the ring of all R-endomorphisms of M and ▽={ϕ∈S|Imϕ≪M}. Moreover, we prove that if M is a projective I -lifting module, then M is a direct sum of cyclic modules. The connections between I -lifting modules and dual Rickart modules are presented.
Введено поняття I-підйомних модулів як природне узагальнення підйомних модулів. Наведено дєякі властивості цього класу модулів. Показано, що якщо M — прямий проективний модуль I-підйому, то S/▽ є регулярною i ▽=JacS, де S — кільце всіх R-ендоморфізмів M, а ▽={ϕ∈S|Imϕ≪M}. Більш того, доведено, що якщо M — проективний I-підйомний модуль, то M є прямою сумою циклічних модулів. Встановлено зв'язки між I-підйомними модулями та дуальними модулями Рікарта.
|
| issn |
1027-3190 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/166121 |
| citation_txt |
A generalization of lifting modules / T.A. Kalati // Український математичний журнал. — 2014. — Т. 66, № 11. — С. 1477–1484. — Бібліогр.: 19 назв. — англ. |
| work_keys_str_mv |
AT kalatita ageneralizationofliftingmodules AT kalatita uzagalʹnennnâpídiomnihmodulív AT kalatita generalizationofliftingmodules |
| first_indexed |
2025-12-07T18:37:29Z |
| last_indexed |
2025-12-07T18:37:29Z |
| _version_ |
1850875733127200768 |