Kernel of a map of a shift along the orbits of continuous flows

Let F:M × R → M be a continuous flow on a topological manifold M. For every subset V⊂M, we denote by P(V) the set of all continuous functions ξ:V→R such that F(x,ξ(x))=x for all x∈V. These functions vanish at nonperiodic points of the flow, while their values at periodic points are integer multiples...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Український математичний журнал
Datum:2010
1. Verfasser: Maksymenko, S.I.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2010
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/166151
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Kernel of a map of a shift along the orbits of continuous flows / S.I. Maksymenko // Український математичний журнал. — 2010. — Т. 62, № 5. — С. 651–659. — Бібліогр.: 11 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Let F:M × R → M be a continuous flow on a topological manifold M. For every subset V⊂M, we denote by P(V) the set of all continuous functions ξ:V→R such that F(x,ξ(x))=x for all x∈V. These functions vanish at nonperiodic points of the flow, while their values at periodic points are integer multiples of the corresponding periods (in general, not minimal). In this paper, the structure of P(V) is described for an arbitrary connected open subset V⊂M. Нехай F:M×R→M — неперервний потік на топологічному многовиді M. Для кожної підмножини V⊂M позначимо через P(V) множину всіх неперервних функцій ξ:V→R , що задовольняють умову F(x,ξ(x))=x для всіх x∈V. Такі функції набувають нульового значення в неперіодичних точках потоку, а в періодичних точках їх значення є цілими кратними відповідних періодіб (в загальному не мінімальними). В статті описано структуру P(V) для довільної відкритої зв'язної підмножини V⊂M.
ISSN:1027-3190