On a spherical code in the space of spherical harmonics

We propose a new method for the construction of new “nice” configurations of vectors on the unit sphere S d with the use of spaces of spherical harmonics. Запропоновано повий метод для побудови нових „гарних" конфігурацій векторів на одиничній сфері Sd з використанням просторів сферичних гармон...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Український математичний журнал
Datum:2010
1. Verfasser: Bondarenko, A.V.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2010
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/166164
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:On a spherical code in the space of spherical harmonics / A.V. Bondarenko // Український математичний журнал. — 2010. — Т. 62, № 6. — С. 857 – 859. — Бібліогр.: 4 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-166164
record_format dspace
spelling Bondarenko, A.V.
2020-02-18T06:34:11Z
2020-02-18T06:34:11Z
2010
On a spherical code in the space of spherical harmonics / A.V. Bondarenko // Український математичний журнал. — 2010. — Т. 62, № 6. — С. 857 – 859. — Бібліогр.: 4 назв. — англ.
1027-3190
https://nasplib.isofts.kiev.ua/handle/123456789/166164
517.5
We propose a new method for the construction of new “nice” configurations of vectors on the unit sphere S d with the use of spaces of spherical harmonics.
Запропоновано повий метод для побудови нових „гарних" конфігурацій векторів на одиничній сфері Sd з використанням просторів сферичних гармонік.
en
Інститут математики НАН України
Український математичний журнал
Короткі повідомлення
On a spherical code in the space of spherical harmonics
Про сферичний код у просторі сферичних гармонік
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On a spherical code in the space of spherical harmonics
spellingShingle On a spherical code in the space of spherical harmonics
Bondarenko, A.V.
Короткі повідомлення
title_short On a spherical code in the space of spherical harmonics
title_full On a spherical code in the space of spherical harmonics
title_fullStr On a spherical code in the space of spherical harmonics
title_full_unstemmed On a spherical code in the space of spherical harmonics
title_sort on a spherical code in the space of spherical harmonics
author Bondarenko, A.V.
author_facet Bondarenko, A.V.
topic Короткі повідомлення
topic_facet Короткі повідомлення
publishDate 2010
language English
container_title Український математичний журнал
publisher Інститут математики НАН України
format Article
title_alt Про сферичний код у просторі сферичних гармонік
description We propose a new method for the construction of new “nice” configurations of vectors on the unit sphere S d with the use of spaces of spherical harmonics. Запропоновано повий метод для побудови нових „гарних" конфігурацій векторів на одиничній сфері Sd з використанням просторів сферичних гармонік.
issn 1027-3190
url https://nasplib.isofts.kiev.ua/handle/123456789/166164
citation_txt On a spherical code in the space of spherical harmonics / A.V. Bondarenko // Український математичний журнал. — 2010. — Т. 62, № 6. — С. 857 – 859. — Бібліогр.: 4 назв. — англ.
work_keys_str_mv AT bondarenkoav onasphericalcodeinthespaceofsphericalharmonics
AT bondarenkoav prosferičniikoduprostorísferičnihgarmoník
first_indexed 2025-11-26T13:27:12Z
last_indexed 2025-11-26T13:27:12Z
_version_ 1850622936332894208
fulltext UDC 517.5 A. V. Bondarenko (Nat. Taras Shevchenko Univ. Kyiv, Ukraine) ON A SPHERICAL CODE IN THE SPACE OF SPHERICAL HARMONICS PRO SFERYÇNYJ KOD U PROSTORI SFERYÇNYX HARMONIK We propose a new method for the construction of new “nice” configurations of vectors on the unit sphere S d with the use of spaces of spherical harmonics. Zaproponovano novyj metod dlq pobudovy novyx „harnyx” konfihuracij vektoriv na odynyçnij sferi S d z vykorystannqm prostoriv sferyçnyx harmonik. 1. Introduction. This paper is inspired by classical book J. H. Conway and N. J. A. Sloane [1] and recent paper of H. Cohn and A. Kumar [2]. The exceptional arrangement of points on the spheres are discussed there. Especially interesting are constructions coming from well known E8 lattice and Leech lattice Λ24 . The main idea of the paper is to use these arrangements for construction new good arrangements in the spaces of spherical harmonics Hk d . Recently we have use dramatically the calculations in these spaces to obtain new asymptotic existence bounds for spherical designs, see [3]. Below we need a few facts on spherical harmonics. Let ∆ be the Laplace operator in Rd +1 ∆ = ∂ ∂= + ∑ 2 2 1 1 x jj d . We say that a polynomial P in Rd +1 is harmonic if ∆ P = 0. For integer k ≥ 1 the restriction to Sd of a homogeneous harmonic polynomial of degree k is called a spherical harmonic of degree k . The vector space of all spherical harmonics of degree k will be denoted by Hk d (see [4] for details). The dimension of Hk d is given by dim Hk d = 2 1 1 1k d k d d k k + − + − + −      . Consider usual inner product in Hk d 〈 〉P Q, : = P x Q x d xd Sd ( ) ( ) ( )µ∫ , where µd x( ) is normalized Lebesgue measure on the unit sphere Sd . Now, for each point x Sd∈ there exists a unique polynomial Px k d∈H such that 〈 〉P Qx , = Q x( ) for all Q k d∈H . It is well known that P yx ( ) = g x y(( , )) , where g is a corresponding Gegenbauer po- lynomial. Let Gx be normalized polynomial Px , that is Gx = P gx / ( ) /1 1 2 . Note © A. V. BONDARENKO, 2010 ISSN 1027-3190. Ukr. mat. Ωurn., 2010, t. 62, # 6 857 858 A. V. BONDARENKO that 〈 〉G Gx x1 2 , = g x x g(( , )) ( )/1 2 1 . So, if we have some arrangement X = = { }, ,x xN1 … on Sd with known distribution of inner products ( , )x xi j , then, for each k, we have corresponding set GX = { }, ,G Gx xN1 … in Hk d , also with known distribution of inner products. Using this construction we will obtain in the next secti- on the optimal antipodal spherical ( 35, 240, 1 / 7 ) code from minimal vectors of E 8 lattice. Here is the definition. Definition 1. An antipodal set X = { }, ,x xN1 … on Sd is called antipodal spherical ( , , )d N a+ 1 code, if ( , )x xi j ≤ a, for some a > 0 and for all xi , x Xj ∈ , i ≠ j, which are not antipodal. Such code is called optimal if for any antipodal set Y = { }, ,y yN1 … on Sd there exists yi , y Yj ∈ , i ≠ j , which are not antipodal and ( , )y yi j ≥ a . In the other words, antipodal spherical ( , , )d N a+ 1 code is optimal if a is a mi- nimal possible number for fixed N, d. Definition 2. An antipodal set X = { }, ,x xN1 … on Sd forms spherical 3- design if and only if 1 2 2 1N x xi j i j N ( , ) , = ∑ = 1 1d + . Note, that for all x x SN d 1, ,… ∈ the following inequality hold 1 2 2 1N x xi j i j N ( , ) , = ∑ ≥ 1 1d + . Another equivalent definition is the following: The set of points x x SN d 1, ,… ∈ is called a spherical 3-design if P x d xd Sd ( ) ( )µ∫ = 1 1N P xi i N ( ) = ∑ for all algebraic polynomials in d + 1 variables and of total degree at most 3, where µd is normalized Lebesgue measure on Sd . Thus we will prove the following theorem. Theorem 1. There exists an optimal antipodal spherical ( 35, 240, 1 / 7 ) code, those vectors form spherical 3-design. 2. Construction and the proof of optimality. Proof of Theorem 1. Let X = = { }, ,x x1 120… be any subset of 240 normalized minimal vectors of E8 lattice, such that no pair of antipodal vectors presents in X . Take in the space H2 7 the polyno- mials G yxi ( ) = g x yi2(( , )) , i = 1 120, ,… , ISSN 1027-3190. Ukr. mat. Ωurn., 2010, t. 62, # 6 ON A SPHERICAL CODE IN THE SPACE OF SPHERICAL HARMONICS 859 where g t2( ) = 8 7 1 7 2t − is a corresponding normalized Gegenbauer polynomial. Since ( , )x xi j = 0 or ± 1 / 2 , for i ≠ j, then 〈 〉G Gx xi j , = g x yi j2(( , )) = ± 1 / 7 ! It looks really like a mystery the fact that g x xi j2(( , )) = const, for any different xi , x Xj ∈ . But exactly this is essential for the proof of optimality of our code. Since, dim H2 7 = 35, then the points G Gx x1 120 , , ,… − … −G Gx x1 120 , , provide antipodal spherical ( 35, 240, 1 / 7 ) code. Here is a proof of optimality. Take arbitrary antipodal set of points Y = { }, ,y y1 240… in R35 . Then, the inequality 1 2402 2 1 240 ( , ) , y yi j i j = ∑ ≥ 1 / 35, implies that ( , )y yi j 2 ≥ 1 / 49, for some yi , y Yj ∈ , i ≠ j, which are not antipodal. This immediately gives us an optimality of our construction. The other reason why it works, that is our set is also spherical 3-design in R35 . We are still not able genera- lize this construction even for Leech lattice Λ24 . We also don’t know whether the construction described above is an optimal spherical ( 35, 240, 1 / 7 ) code. Acknowledgement. The author would like to thank Professor Henry Cohn for the fruitfull discussions on the paper. 1. Conway J. H., Sloane N. J. A. Sphere packings, lattices and groups. – New York: Springer, 1999. – 703 p. 2. Cohn H., Kumar A. Universally optimal distribution of points on spheres // J. Amer. Math. Soc. – 2007. – 20. – P. 99 – 148. 3. Bondarenko A., Viazovska M. Spherical designs via Brouwer fixed point theorem // SIAM J. Discrete Math. – 2010. – 24. – P. 207 – 217. 4. Mhaskar H. N., Narcowich F. J., Ward J. D. Spherical Marcinkiewich – Zygmund inequalities and positive quadrature // Math. Comp. – 2000. – 70. – P. 1113 – 1130. Received 22.07.09 ISSN 1027-3190. Ukr. mat. Ωurn., 2010, t. 62, # 6