Точки сукупної неперервності та великі коливання

Для топологических пространств X, Y и метрического пространства Z введен новый класс N(X×Y,Z) отображений f:X×Y→Z, содержащий все горизонтально квазинепрерывные и непрерывные относительно второй переменной отображения, и установлено, что для каждого отображения f из этого класса и произвольного множ...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Український математичний журнал
Дата:2010
Автори: Маслюченко, В.К., Нестеренко, В.В.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Інститут математики НАН України 2010
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/166166
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Точки сукупної неперервності та великі коливання / В.К. Маслюченко, В.В. Нестеренко // Український математичний журнал. — 2010. — Т. 62, № 6. — С. 791–800. — Бібліогр.: 24 назв. — укр.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-166166
record_format dspace
spelling Маслюченко, В.К.
Нестеренко, В.В.
2020-02-18T06:35:13Z
2020-02-18T06:35:13Z
2010
Точки сукупної неперервності та великі коливання / В.К. Маслюченко, В.В. Нестеренко // Український математичний журнал. — 2010. — Т. 62, № 6. — С. 791–800. — Бібліогр.: 24 назв. — укр.
1027-3190
https://nasplib.isofts.kiev.ua/handle/123456789/166166
517.51
Для топологических пространств X, Y и метрического пространства Z введен новый класс N(X×Y,Z) отображений f:X×Y→Z, содержащий все горизонтально квазинепрерывные и непрерывные относительно второй переменной отображения, и установлено, что для каждого отображения f из этого класса и произвольного множества B исчислимого типа в Y множество CB(f) всех точек х∈X таких, что f является совокупно непрерывным в каждой точке множества {x}×B, есть остаточным в X. Кроме того, доказано, что если X — беровское пространство, Y — метризуемый компакт, Z — метрическое пространство f∈N(X×Y,Z), то для каждого ε>0 проекция на X множества Dε(f) всех тех точек p∈X×Y, в которых колебание ωf(p)≥ε, является замкнутым и нигде не плотным множеством в X.
For topological spaces X and Y and a metric space Z, we introduce a new class N(X×Y,Z) of mappings f: X × Y → Z containing all horizontally quasicontinuous mappings continuous with respect to the second variable. It is shown that, for each mapping f from this class and any countable-type set B in Y, the set C B (f) of all points x from X such that f is jointly continuous at any point of the set {x} × B is residual in X: We also prove that if X is a Baire space, Y is a metrizable compact set, Z is a metric space, and f∈N(X×Y,Z), then, for any ε > 0, the projection of the set D ε(f) of all points p ∈ X × Y at which the oscillation ω f (p) ≥ ε onto X is a closed set nowhere dense in X.
uk
Інститут математики НАН України
Український математичний журнал
Статті
Точки сукупної неперервності та великі коливання
Points of joint continuity and large oscillations
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Точки сукупної неперервності та великі коливання
spellingShingle Точки сукупної неперервності та великі коливання
Маслюченко, В.К.
Нестеренко, В.В.
Статті
title_short Точки сукупної неперервності та великі коливання
title_full Точки сукупної неперервності та великі коливання
title_fullStr Точки сукупної неперервності та великі коливання
title_full_unstemmed Точки сукупної неперервності та великі коливання
title_sort точки сукупної неперервності та великі коливання
author Маслюченко, В.К.
Нестеренко, В.В.
author_facet Маслюченко, В.К.
Нестеренко, В.В.
topic Статті
topic_facet Статті
publishDate 2010
language Ukrainian
container_title Український математичний журнал
publisher Інститут математики НАН України
format Article
title_alt Points of joint continuity and large oscillations
description Для топологических пространств X, Y и метрического пространства Z введен новый класс N(X×Y,Z) отображений f:X×Y→Z, содержащий все горизонтально квазинепрерывные и непрерывные относительно второй переменной отображения, и установлено, что для каждого отображения f из этого класса и произвольного множества B исчислимого типа в Y множество CB(f) всех точек х∈X таких, что f является совокупно непрерывным в каждой точке множества {x}×B, есть остаточным в X. Кроме того, доказано, что если X — беровское пространство, Y — метризуемый компакт, Z — метрическое пространство f∈N(X×Y,Z), то для каждого ε>0 проекция на X множества Dε(f) всех тех точек p∈X×Y, в которых колебание ωf(p)≥ε, является замкнутым и нигде не плотным множеством в X. For topological spaces X and Y and a metric space Z, we introduce a new class N(X×Y,Z) of mappings f: X × Y → Z containing all horizontally quasicontinuous mappings continuous with respect to the second variable. It is shown that, for each mapping f from this class and any countable-type set B in Y, the set C B (f) of all points x from X such that f is jointly continuous at any point of the set {x} × B is residual in X: We also prove that if X is a Baire space, Y is a metrizable compact set, Z is a metric space, and f∈N(X×Y,Z), then, for any ε > 0, the projection of the set D ε(f) of all points p ∈ X × Y at which the oscillation ω f (p) ≥ ε onto X is a closed set nowhere dense in X.
issn 1027-3190
url https://nasplib.isofts.kiev.ua/handle/123456789/166166
fulltext
citation_txt Точки сукупної неперервності та великі коливання / В.К. Маслюченко, В.В. Нестеренко // Український математичний журнал. — 2010. — Т. 62, № 6. — С. 791–800. — Бібліогр.: 24 назв. — укр.
work_keys_str_mv AT maslûčenkovk točkisukupnoíneperervnostítavelikíkolivannâ
AT nesterenkovv točkisukupnoíneperervnostítavelikíkolivannâ
AT maslûčenkovk pointsofjointcontinuityandlargeoscillations
AT nesterenkovv pointsofjointcontinuityandlargeoscillations
first_indexed 2025-11-24T06:41:05Z
last_indexed 2025-11-24T06:41:05Z
_version_ 1850844367145664512