Перемешивание „по Ибрагимову". Оценка скорости сближения семейства интегральных функционалов от решения дифференциального уравнения с периодическими коэффициентами с семейством вииеровских процессов. Некоторые приложения. I
Доведено, що обмежена 1-періодична функція від розв'язку однорідного за часом дифузійного рівняння з 1-періодичними коефіцієнтами утворює процес, що задовольняє умову рівномірного сильного перемішування. Встановлено оцінку швидкості зближення за ймовірністю в метриці простору C[0,T] деякого нор...
Gespeichert in:
| Veröffentlicht in: | Український математичний журнал |
|---|---|
| Datum: | 2010 |
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | Russian |
| Veröffentlicht: |
Інститут математики НАН України
2010
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/166169 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Перемешивание „по Ибрагимову". Оценка скорости сближения семейства интегральных функционалов от решения дифференциального уравнения с периодическими коэффициентами с семейством вииеровских процессов. Некоторые приложения. I / Б.В. Бондарев, С.М. Козырь // Український математичний журнал. — 2010. — Т. 62, № 6. — С. 733–753. — Бібліогр.: 26 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | Доведено, що обмежена 1-періодична функція від розв'язку однорідного за часом дифузійного рівняння з 1-періодичними коефіцієнтами утворює процес, що задовольняє умову рівномірного сильного перемішування. Встановлено оцінку швидкості зближення за ймовірністю в метриці простору C[0,T] деякого нормованого інтегрального функціонала від розв'язку звичайного однорідного за часом стохастичного диференціального рівняння з 1-періодичними коефіцієнтами з сім'єю віперових процесів. Як приклад, розглянуто звичайне диференціальне рівняння, збурене швидкоосцилюючим центрованим процесом, який є 1-періодичною функцією від розв'язку однорідного за часом стохастичного диференціального рівняння з 1-періодичними коефіцієнтами. Встановлено оцінку швидкості зближення розв'язку такого рівняння з розв'язком відповідного стохастичного рівняння Іто.
We prove that a bounded 1-periodic function of a solution of a time-homogeneous diffusion equation with 1-periodic coefficients forms a process that satisfies the condition of uniform strong mixing. We obtain an estimate for the rate of approach of a certain normalized integral functional of a solution of an ordinary time-homogeneous stochastic differential equation with 1-periodic coefficients to a family of Wiener processes in probability in the metric of space C [0, T]. As an example, we consider an ordinary differential equation perturbed by a rapidly oscillating centered process that is a 1-periodic function of a solution of a time-homogeneous stochastic differential equation with 1-periodic coefficients. We obtain an estimate for the rate of approach of a solution of this equation to a solution of the corresponding Itô stochastic equation.
|
|---|---|
| ISSN: | 1027-3190 |