Quantitative convergence theorems for a class of Bernstein–Durrmeyer operators preserving linear functions

We supplement recent results on a class of Bernstein–Durrmeyer operators preserving linear functions. This is done by discussing two limiting cases and proving quantitative Voronovskaya-type assertions involving the first-order and second-order moduli of smoothness. The results generalize and improv...

Full description

Saved in:
Bibliographic Details
Published in:Український математичний журнал
Date:2010
Main Authors: Gonska, H., Peltenia, R.
Format: Article
Language:English
Published: Інститут математики НАН України 2010
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/166181
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Quantitative convergence theorems for a class of Bernstein–Durrmeyer operators preserving linear functions / H. Gonska, R.Peltenia // Український математичний журнал. — 2010. — Т. 62, № 7. — С. 913–922. — Бібліогр.: 8 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:We supplement recent results on a class of Bernstein–Durrmeyer operators preserving linear functions. This is done by discussing two limiting cases and proving quantitative Voronovskaya-type assertions involving the first-order and second-order moduli of smoothness. The results generalize and improve earlier statements for Bernstein and genuine Bernstein–Durrmeyer operators. Отримані нещодавно результати щодо одного класу операторів Бернштейна-Дуррмейєра, які зберігають лінійні функції, доповнено шляхом вивчення двох граничних випадків та доведення кількісних тверджень типу Вороновської, що містять модулі гладкості першого та другого порядків. Результати узагальнюють та покращують попередні твердження для операторів Бернпггейна та справжніх операторів Бернштейна - Дуррмейєра.
ISSN:1027-3190