Класифікація топологічно спряжених афінних відображень
Рассматриваются аффинные отображения из Rn в Rn,n≥1. Доказана теорема o топологической сопряженности аффинного отображения, имеющего хотя бы одну неподвижную точку, с соответствующим линейным отображением. Получена классификация, с точностью до топологической сопряженности, аффинных отображений из R...
Saved in:
| Published in: | Український математичний журнал |
|---|---|
| Date: | 2009 |
| Main Author: | |
| Format: | Article |
| Language: | Ukrainian |
| Published: |
Інститут математики НАН України
2009
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/166208 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Класифікація топологічно спряжених афінних відображень / Т.В. Будницька // Український математичний журнал. — 2009. — Т. 61, № 1. — С. 134-139. — Бібліогр.: 11 назв. — укр. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | Рассматриваются аффинные отображения из Rn в Rn,n≥1. Доказана теорема o топологической сопряженности аффинного отображения, имеющего хотя бы одну неподвижную точку, с соответствующим линейным отображением. Получена классификация, с точностью до топологической сопряженности, аффинных отображений из R в R, а также тех аффинных отображений из Rn в Rn,n>1, которые имеют хотя бы одну неподвижную точку и чьи линейные части не являются периодическими.
We consider affine mappings from Rn into Rn,n≥1. We prove a theorem on the topological conjugacy of an affine mapping that has at least one fixed point to the corresponding linear mapping. We give a classification, up to topological conjugacy, for affine mappings from R into R and also for affine mappings from Rn into Rn,n>1, having at least one fixed point and the nonperiodic linear part.
|
|---|---|
| ISSN: | 1027-3190 |