Квазіперіодичні екстремалі неавтономних лагранжевих систем на ріманових многовидах
Рассматривается квазипериодически возбуждаемая натуральная лагранжева система на римановом многообразии. Указаны достаточные условия, при выполнении которых такая система имеет слабое квазипериодическое по Безико-вичу решение, минимизирующее усредтенный лагранжиан. Доказано, что в действительности э...
Gespeichert in:
| Veröffentlicht in: | Український математичний журнал |
|---|---|
| Datum: | 2014 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | Ukrainian |
| Veröffentlicht: |
Інститут математики НАН України
2014
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/166231 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Квазіперіодичні екстремалі неавтономних лагранжевих систем на ріманових многовидах / I.О. Парасюк // Український математичний журнал. — 2014. — Т. 66, № 10. — С. 1379–1386. — Бібліогр.: 23 назв. — укр. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | Рассматривается квазипериодически возбуждаемая натуральная лагранжева система на римановом многообразии. Указаны достаточные условия, при выполнении которых такая система имеет слабое квазипериодическое по Безико-вичу решение, минимизирующее усредтенный лагранжиан. Доказано, что в действительности это решение является дважды непрерывно дифференцируемой равномерной квазипериодической функцией, а соответствующая система в вариациях экспоненциально дихотомична на всей вещественной оси.
The paper deals with a quasiperiodically excited natural Lagrangian system on a Riemannian manifold. We find sufficient conditions under which this system has a weak Besicovitch quasiperiodic solution minimizing the averaged Lagrangian. It is proved that this solution is indeed a twice continuously differentiable uniformly quasiperiodic function, and the corresponding system in variations is exponentially dichotomous on the real axis.
|
|---|---|
| ISSN: | 1027-3190 |