Вольтерровские квадратичные стохастические операторы двуполой популяции
Уведено поняття вольтеррiвського квадратичного стохастичного оператора двополої популяцiї (ВКСОДП). Опис нерухомих точок ВКСОДП зведено до опису нерухомих точок операторiв вольтеррiвського типу. Побудовано кiлька функцiй Ляпунова для ВКСОДП. З використанням цих функцiй отримано оцiнку зверху для ω-г...
Saved in:
| Published in: | Український математичний журнал |
|---|---|
| Date: | 2011 |
| Main Authors: | , |
| Format: | Article |
| Language: | Russian |
| Published: |
Інститут математики НАН України
2011
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/166256 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Вольтерровские квадратичные стохастические операторы двуполой популяции / У.А. Розиков, У.У. Жамилов // Український математичний журнал. — 2011. — Т. 63, № 7. — С. 985–998. — Бібліогр.: 13 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | Уведено поняття вольтеррiвського квадратичного стохастичного оператора двополої популяцiї (ВКСОДП). Опис нерухомих точок ВКСОДП зведено до опису нерухомих точок операторiв вольтеррiвського типу. Побудовано кiлька функцiй Ляпунова для ВКСОДП. З використанням цих функцiй отримано оцiнку зверху для ω-граничної множини траєкторiй. Показано, що множина всiх ВКСОДП є опуклим компактом, i знайдено крайнi точки цiєї множини. Побудовано ВКСОДП, що мають перiодичну орбiту (траєкторiю) з перiодом 2.
We introduce the notion of Volterra quadratic stochastic operators of a bisexual population. The description of the fixed points of Volterra quadratic stochastic operators of a bisexual population is reduced to the description of the fixed points of Volterra-type operators. Several Lyapunov functions are constructed for the Volterra quadratic stochastic operators of a bisexual population. By using these functions, we obtain an upper bound for the ω-limit set of trajectories. It is shown that the set of all Volterra quadratic stochastic operators of a bisexual population is a convex compact set, and the extreme points of this set are found. Volterra quadratic stochastic operators of a bisexual population that have a 2-periodic orbit (trajectory) are constructed.
|
|---|---|
| ISSN: | 1027-3190 |